Laboratory and field/pot experiments were conducted to determine the effect of two insecticides, fipronil and pyriproxyfen, on growth, symbiotic properties (nodulation and leghaemoglobin content), amount of N and P nutrients in plant organs, seed yield and seed protein of pea plants. In addition, the role of the most promising fipronil and pyriproxyfen tolerant Rhizobium leguminosarum strain MRP1 having plant growth promoting traits such as, production of phytohormones and siderophores, was also assessed in the presence and absence of both insecticides. Generally, fipronil and pyriproxyfen at the tested rates (recommended and higher doses) decreased the growth of both R. leguminosarum inoculated or uninoculated pea plants. Of the various concentrations of the two insecticides, pyriproxyfen at all concentrations in general, showed comparatively more severe toxicity to pea plants by decreasing plant biomass, symbiotic attributes, nutrients (nitrogen and phosphorus) uptake, seed yield and grain protein over the uninoculated control. The sole application of 3900 mu g pyriproxyfen kg(-1) soil (three times the recommended dose) showed the highest toxicity and decreased the root nitrogen, shoot nitrogen, root phosphorus, shoot phosphorus, seed yield and grain protein by 20%, 27%, 25%, 29%, 15% and 2% respectively, compared to the control. Interestingly, when the inoculant strain MRP1 was used with any concentration of the two insecticides, it significantly (P <= 0.05) increased the measured variables (plant dry weight, nodule numbers, dry nodule biomass, leghaemoglobin, nitrogen and phosphorus uptake, seed yield and grain protein) when compared to the plants grown in sandy clay loam soils treated solely (without inoculant) with the same individual treatment of each insecticide. For instance, three times the recommended dose of pyriproxyfen with strain MRP1 showed a highest stimulatory effect and increased the root nitrogen, shoot nitrogen, root phosphorus, shoot phosphorus, seed yield and grain protein by 108%, 124%, 119%, 153%, 112% and 6% respectively, compared to the plants grown in soil treated solely with three times the recommended dose of pyriproxyfen. (C) 2010 Elsevier Ltd. All rights reserved.