Point-cloud registration using adaptive radial basis functions

被引:19
|
作者
Zhang, Ju [1 ]
Ackland, David [2 ]
Fernandez, Justin [1 ,3 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Level G,Uniserv House,70 Symonds St, Auckland 1010, New Zealand
[2] Univ Melbourne, Dept Biomed Engn, Parkville, Vic, Australia
[3] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
关键词
Non-rigid registration; registration; radial basis function; morphing; model generation;
D O I
10.1080/10255842.2018.1484914
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-rigid registration is a common part of bioengineering model-generation workflows. Compared to common mesh-based methods, radial basis functions can provide more flexible deformation fields due to their meshless nature. We introduce an implementation of RBF non-rigid registration with iterative knot-placement to adaptively reduce registration error. The implementation is validated on surface meshes of the femur, hemi-pelvis, mandible, and lumbar spine. Mean registration surface errors ranged from 0.37 to 0.99mm, Hausdorff distance from 1.84 to 2.47mm, and DICE coefficients from 0.97 to 0.99. The implementation is available for use in the free and open-source GIAS2 library.
引用
收藏
页码:498 / 502
页数:5
相关论文
共 50 条
  • [31] Implicit fitting using radial basis functions with ellipsoid constraint
    Li, Q
    Wills, D
    Phillips, R
    Viant, WJ
    Griffiths, JG
    Ward, J
    COMPUTER GRAPHICS FORUM, 2004, 23 (01) : 55 - 69
  • [32] SOLUTIONS TO PSEUDODIFFERENTIAL EQUATIONS USING SPHERICAL RADIAL BASIS FUNCTIONS
    Pham, T. D.
    Tran, T.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 473 - 485
  • [33] On the formulation of credit barrier model using radial basis functions
    Tung, Humphrey K. K.
    Wong, Michael C. S.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2014, 65 (09) : 1437 - 1452
  • [34] Parallel Stochastic Global Optimization Using Radial Basis Functions
    Regis, Rommel G.
    Shoemaker, Christine A.
    INFORMS JOURNAL ON COMPUTING, 2009, 21 (03) : 411 - 426
  • [35] Adaptive radial basis function interpolation using an error indicator
    Zhang, Qi
    Zhao, Yangzhang
    Levesley, Jeremy
    NUMERICAL ALGORITHMS, 2017, 76 (02) : 441 - 471
  • [36] Adaptive radial basis function interpolation using an error indicator
    Qi Zhang
    Yangzhang Zhao
    Jeremy Levesley
    Numerical Algorithms, 2017, 76 : 441 - 471
  • [37] A New Image Rotation Approach Using Radial Basis Functions
    Cheng, Huifang
    Wan, Yi
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 1026 - 1031
  • [38] Using radial basis functions to construct local volatility surfaces
    Glover, J.
    Ali, M. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4834 - 4839
  • [39] Approximation of insurance liability contracts using radial basis functions
    Singor, Stefan N.
    Schols, Eric
    Oosterlee, Cornelis W.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (11) : 2245 - 2271
  • [40] A COMPARISON OF RADIAL BASIS FUNCTIONS IN APPLICATIONS TO IMAGE MORPHING
    Jin, Boram
    Lee, Yonghae
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 321 - 332