Point-cloud registration using adaptive radial basis functions

被引:19
|
作者
Zhang, Ju [1 ]
Ackland, David [2 ]
Fernandez, Justin [1 ,3 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Level G,Uniserv House,70 Symonds St, Auckland 1010, New Zealand
[2] Univ Melbourne, Dept Biomed Engn, Parkville, Vic, Australia
[3] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
关键词
Non-rigid registration; registration; radial basis function; morphing; model generation;
D O I
10.1080/10255842.2018.1484914
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-rigid registration is a common part of bioengineering model-generation workflows. Compared to common mesh-based methods, radial basis functions can provide more flexible deformation fields due to their meshless nature. We introduce an implementation of RBF non-rigid registration with iterative knot-placement to adaptively reduce registration error. The implementation is validated on surface meshes of the femur, hemi-pelvis, mandible, and lumbar spine. Mean registration surface errors ranged from 0.37 to 0.99mm, Hausdorff distance from 1.84 to 2.47mm, and DICE coefficients from 0.97 to 0.99. The implementation is available for use in the free and open-source GIAS2 library.
引用
收藏
页码:498 / 502
页数:5
相关论文
共 50 条
  • [21] PointpartNet: 3D point-cloud registration via deep part-based feature extraction
    Yan, Shixun
    Pathak, Sarthak
    Umeda, Kazunori
    ADVANCED ROBOTICS, 2022, 36 (15) : 724 - 734
  • [22] A note on the meshless method using radial basis functions
    Duan, Yong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (01) : 66 - 75
  • [23] GRID REFINEMENT IN THE CONSTRUCTION OF LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS
    Mohammed, Najla
    Giesl, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (08): : 2453 - 2476
  • [24] DATA APPROXIMATION USING POLYHARMONIC RADIAL BASIS FUNCTIONS
    Segeth, Karel
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 20, 2021, : 129 - 138
  • [25] A locally constrained radial basis function for registration and warping of images
    Siddiqui, Adil Masood
    Masood, Asif
    Saleem, Muhammad
    PATTERN RECOGNITION LETTERS, 2009, 30 (04) : 377 - 390
  • [26] Stabilized interpolation using radial basis functions augmented with selected radial polynomials
    Pooladi, Fatemeh
    Larsson, Elisabeth
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [27] Automatic deformable surface registration for medical applications by radial basis function-based robust point-matching
    Kim, Youngjun
    Na, Yong Hum
    Xing, Lei
    Lee, Rena
    Park, Sehyung
    COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 77 : 173 - 181
  • [28] Comparison of Radial Basis Functions
    Rozhenko, A., I
    NUMERICAL ANALYSIS AND APPLICATIONS, 2018, 11 (03) : 220 - 235
  • [29] Robustness of radial basis functions
    Eickhoff, Ralf
    Rueckert, Ulrich
    NEUROCOMPUTING, 2007, 70 (16-18) : 2758 - 2767
  • [30] Adaptive ensemble learning of radial basis functions for efficient geotechnical reliability analysis
    Liu, Yadong
    Yang, Zhiyong
    Li, Xueyou
    COMPUTERS AND GEOTECHNICS, 2022, 146