Multidimensional analogues of the geometric s⇆t duality

被引:6
作者
Korepanov, IG [1 ]
机构
[1] S Ural State Univ, Chelyabinsk, Russia
关键词
D O I
10.1007/BF02551073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Customarily, the s <----> t duality property for scattering amplitudes, e.g., for the Veneziano amplitude, is naturally related to two-dimensional geometry. Saito and the author previously proposed a simple geometric construction of such amplitudes. Here, we construct analogues of one such amplitude related to multidimensional Euclidean space; the three-dimensional case is discussed in detail. The result is a variant of the Regge calculus closely related to integrable models.
引用
收藏
页码:999 / 1005
页数:7
相关论文
共 11 条
[1]  
Berger M., 1977, Geometrie, V1
[2]  
Green M., 1987, SUPERSTRING THEORY, V1
[3]   Functional tetrahedron equation [J].
Kashaev, RM ;
Korepanov, IG ;
Sergeev, SM .
THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 117 (03) :1402-1413
[4]  
KASHAEV RM, 1995, SOLVINT9512005
[5]  
KASHAEV RM, 1995, ENSLAPPL56995 ENS LY
[6]  
Kennelly A. E., 1899, Electrical World and Engineer, V34, P413
[7]  
Korepanov I. G., 1997, J MATH SCI, V85, P1671
[8]   Finite-dimensional analogues of the string s⇆t duality and the pentagon equation [J].
Korepanov, IG ;
Saito, S .
THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 120 (01) :862-869
[9]  
KOREPANOV IG, 1999, SOLVINT9904005
[10]  
KOREPANOV IG, 1995, SOLVINT9506003