Current and future prospects for CRISPR-based tools in bacteria

被引:92
作者
Luo, Michelle L. [1 ]
Leenay, Ryan T. [1 ]
Beisel, Chase L. [1 ]
机构
[1] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
antimicrobials; Cas9; genetic control; genetic circuits; genome engineering; undomesticated microbes; RNA-GUIDED ENDONUCLEASE; SEQUENCE-SPECIFIC ANTIMICROBIALS; CAS SYSTEMS; ESCHERICHIA-COLI; HUMAN-CELLS; GENE-EXPRESSION; IMMUNE-SYSTEM; ADAPTIVE IMMUNITY; CRYSTAL-STRUCTURE; STREPTOCOCCUS-THERMOPHILUS;
D O I
10.1002/bit.25851
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas systems have rapidly transitioned from intriguing prokaryotic defense systems to powerful and versatile biomolecular tools. This article reviews how these systems have been translated into technologies to manipulate bacterial genetics, physiology, and communities. Recent applications in bacteria have centered on multiplexed genome editing, programmable gene regulation, and sequence-specific antimicrobials, while future applications can build on advances in eukaryotes, the rich natural diversity of CRISPR-Cas systems, and the untapped potential of CRISPR-based DNA acquisition. Overall, these systems have formed the basis of an ever-expanding genetic toolbox and hold tremendous potential for our future understanding and engineering of the bacterial world. Biotechnol. Bioeng. 2016;113: 930-943. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:930 / 943
页数:14
相关论文
共 50 条
  • [41] CRISPR-based technologies: prokaryotic defense weapons repurposed
    Terns, Rebecca M.
    Terns, Michael P.
    TRENDS IN GENETICS, 2014, 30 (03) : 111 - 118
  • [42] Engineering the Delivery System for CRISPR-Based Genome Editing
    Glass, Zachary
    Lee, Matthew
    Li, Yamin
    Xu, Qiaobing
    TRENDS IN BIOTECHNOLOGY, 2018, 36 (02) : 173 - 185
  • [43] Identifying Novel Enhancer Elements with CRISPR-Based Screens
    Klein, Jason C.
    Chen, Wei
    Gasperini, Molly
    Shendure, Jay
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 326 - 332
  • [44] CRISPR-based genetic screens advance cancer immunology
    Cao, Yuanfang
    Li, Xueting
    Pan, Yumu
    Wang, Huahe
    Yang, Siyu
    Hong, Lingjuan
    Ye, Lupeng
    SCIENCE CHINA-LIFE SCIENCES, 2024, 67 (12) : 2554 - 2562
  • [45] CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense
    Greene, Adrienne C.
    TRENDS IN BIOTECHNOLOGY, 2018, 36 (02) : 127 - 130
  • [46] Progress of CRISPR-based programmable RNA manipulation and detection
    Wang, Beibei
    Yang, Hui
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2023, 14 (06)
  • [47] CRISPR/Cas-mediated genome editing for crop improvement: current applications and future prospects
    Jang, Geupil
    Joung, Young Hee
    PLANT BIOTECHNOLOGY REPORTS, 2019, 13 (01) : 1 - 10
  • [48] The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects
    Gao, Rui
    Liao, Xinyu
    Zhao, Xihong
    Liu, Donghong
    Ding, Tian
    COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2021, 20 (02) : 2146 - 2175
  • [49] CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii
    Li, Qi
    Chen, Jun
    Minton, Nigel P.
    Zhang, Ying
    Wen, Zhiqiang
    Liu, Jinle
    Yang, Haifeng
    Zeng, Zhe
    Ren, Xiaodan
    Yang, Junjie
    Gu, Yang
    Jiang, Weihong
    Jiang, Yu
    Yang, Sheng
    BIOTECHNOLOGY JOURNAL, 2016, 11 (07) : 961 - 972
  • [50] A CRISPR-based chromosomal-separation technique for Escherichia coli
    Junchang Su
    Pengju Wang
    Ju Li
    Dongdong Zhao
    Siwei Li
    Feiyu Fan
    Zhubo Dai
    Xiaoping Liao
    Zhitao Mao
    Chunzhi Zhang
    Changhao Bi
    Xueli Zhang
    Microbial Cell Factories, 21