Current and future prospects for CRISPR-based tools in bacteria

被引:92
作者
Luo, Michelle L. [1 ]
Leenay, Ryan T. [1 ]
Beisel, Chase L. [1 ]
机构
[1] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
antimicrobials; Cas9; genetic control; genetic circuits; genome engineering; undomesticated microbes; RNA-GUIDED ENDONUCLEASE; SEQUENCE-SPECIFIC ANTIMICROBIALS; CAS SYSTEMS; ESCHERICHIA-COLI; HUMAN-CELLS; GENE-EXPRESSION; IMMUNE-SYSTEM; ADAPTIVE IMMUNITY; CRYSTAL-STRUCTURE; STREPTOCOCCUS-THERMOPHILUS;
D O I
10.1002/bit.25851
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas systems have rapidly transitioned from intriguing prokaryotic defense systems to powerful and versatile biomolecular tools. This article reviews how these systems have been translated into technologies to manipulate bacterial genetics, physiology, and communities. Recent applications in bacteria have centered on multiplexed genome editing, programmable gene regulation, and sequence-specific antimicrobials, while future applications can build on advances in eukaryotes, the rich natural diversity of CRISPR-Cas systems, and the untapped potential of CRISPR-based DNA acquisition. Overall, these systems have formed the basis of an ever-expanding genetic toolbox and hold tremendous potential for our future understanding and engineering of the bacterial world. Biotechnol. Bioeng. 2016;113: 930-943. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:930 / 943
页数:14
相关论文
共 50 条
  • [21] CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects
    de la Fuente-Nunez, Cesar
    Lu, Timothy K.
    INTEGRATIVE BIOLOGY, 2017, 9 (02) : 109 - 122
  • [22] CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering
    Dickinson, Daniel J.
    Goldstein, Bob
    GENETICS, 2016, 202 (03) : 885 - 901
  • [23] CRISPR-Based Synthetic Transcription Factors In Vivo: The Future of Therapeutic Cellular Programming
    Pandelakis, Matthew
    Delgado, Elizabeth
    Ebrahimkhani, Mo R.
    CELL SYSTEMS, 2020, 10 (01) : 1 - 14
  • [24] CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy
    Qin, Yiyang
    Li, Shihua
    Li, Xiao-Jiang
    Yang, Su
    NEUROSCIENCE BULLETIN, 2022, 38 (11) : 1397 - 1408
  • [25] Clinical applications of CRISPR-based genome editing and diagnostics
    Foss, Dana V.
    Hochstrasser, Megan L.
    Wilson, Ross C.
    TRANSFUSION, 2019, 59 (04) : 1389 - 1399
  • [26] CRISPR-based strategies in infectious disease diagnosis and therapy
    Binnie, Alexandra
    Fernandes, Emanuel
    Almeida-Lousada, Helder
    de Mello, Ramon Andrade
    Castelo-Branco, Pedro
    INFECTION, 2021, 49 (03) : 377 - 385
  • [27] An Overview of CRISPR-Based Tools and Their Improvements: New Opportunities in Understanding Plant-Pathogen Interactions for Better Crop Protection
    Barakate, Abdellah
    Stephens, Jennifer
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [28] CRISPR-Cas Biochemistry and CRISPR-Based Molecular Diagnostics
    Weng, Zhengyan
    You, Zheng
    Yang, Jie
    Mohammad, Noor
    Lin, Mengshi
    Wei, Qingshan
    Gao, Xue
    Zhang, Yi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (17)
  • [29] Building Blocks of Artificial CRISPR-Based Systems beyond Nucleases
    Kuzmin, Andrey A.
    Tomilin, Alexey N.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [30] CRISPR-based genome editing through the lens of DNA repair
    Nambiar, Tarun S.
    Baudrier, Lou
    Billon, Pierre
    Ciccia, Alberto
    MOLECULAR CELL, 2022, 82 (02) : 348 - 388