A graphical interpretation of the Choquet integral

被引:55
作者
Grabisch, M [1 ]
机构
[1] Univ Paris 06, F-75252 Paris, France
关键词
Choquet integral; decision making; fuzzy measure;
D O I
10.1109/91.873585
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a graphical interpretation of the Choquet integral, viewed as an aggregation operator in the case of two elements, The interpretation relies on the interaction representation introduced by the author.
引用
收藏
页码:627 / 631
页数:5
相关论文
共 17 条
[1]  
Choquet G., 1954, ANN I FOURIER GRENOB, V5, P131, DOI [10.5802/aif.53, DOI 10.5802/AIF.53]
[2]   Interaction transform of set functions over a finite set [J].
Denneberg, D ;
Grabisch, M .
INFORMATION SCIENCES, 1999, 121 (1-2) :149-170
[3]  
Grabisch M., 1997, Tatra Mountains Mathematical Publications, V13, P7
[4]   An axiomatic approach to the concept of interaction among players in cooperative games [J].
Grabisch, M ;
Roubens, M .
INTERNATIONAL JOURNAL OF GAME THEORY, 1999, 28 (04) :547-565
[5]   Alternative representations of discrete fuzzy measures for decision making [J].
Grabisch, M .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1997, 5 (05) :587-607
[6]   k-order additive discrete fuzzy measures and their representation [J].
Grabisch, M .
FUZZY SETS AND SYSTEMS, 1997, 92 (02) :167-189
[7]  
Grabisch M, 2000, STUD FUZZ SOFT COMP, V40, P348
[8]  
GRABISCH M, 2000, STUDIES FUZZINESS
[9]  
Grabisch M., 1995, Fundamentals of uncertainty calculi with applications to fuzzy inference
[10]  
GRABISCH M, 1996, FUZZY SETS METHODS I