In silico analysis of the structure and interaction of COP1 protein of Arabidopsis thaliana

被引:0
作者
Karumuri, Sudha [1 ]
Bandopadhyay, Rajib [1 ]
机构
[1] Birla Inst Technol, Dept Biotechnol, Ranchi 835215, Jharkhand, India
关键词
COP1; protein; Arabidopsis thaliana; In silico; Docking; Regulatory proteins; SPA1; FAST INTERACTION REFINEMENT; REGULATES C-JUN; TRANSCRIPTION FACTOR; LIGHT; PHYTOCHROME; PREDICTION; HY5; WEB; PHOTOMORPHOGENESIS; CRYPTOCHROMES;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous studies have shown that COP1 (constitutive photomorphogenic 1) protein of Arabidopsis thaliana plays a crucial role in different aspects of photomorphogenesis. Interaction of COP1 with SPA1 (suppressor of phytochrome A) and other regulatory proteins actively affect light regulatory gene expression in diverse directions. Though several studies have explained the function of COP1 protein, method of its interaction with SPA1 and cryptochromes are still not explained in detail. In this study, in silico analysis was followed to predict the tertiary structure, active site residues, functionally important regions and regular expressions of COP1 protein. Its ease of its interaction with SPA1 and seven other regulatory proteins, namely bZIP transcription factor 56 (HY5), transcription factor HY5-like (RYE), serine/threonine-protein phosphatase 7 (AtPP7), protein long hypocotyl in FAR-RED 1 (HFR1), OBP3-responsive protein 1 (OBP3), transcription factor MYC2 (MYC2/ZBF1) and Z-box binding factor 2 protein (GBF1/ZBF2) was measured using protein-protein docking. Interaction with MYC2 was found to be stronger than with others with a global energy value of -22.46. It was also found that COP1 shared three regions of regular expression with SPA1, the last expression also being present in MYC2/ZBF1 and OBP3. Taken together, the insight into structural and functional properties of COP1 protein presented in this study would be helpful in determining the role of COP1 in unknown mechanisms of photomorphogenesis.
引用
收藏
页码:343 / 349
页数:7
相关论文
共 52 条
  • [1] FireDock: Fast interaction refinement in molecular docking
    Andrusier, Nelly
    Nussinov, Ruth
    Wolfson, Haim J.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 69 (01) : 139 - 159
  • [2] REGULATORY HIERARCHY OF PHOTOMORPHOGENIC LOCI - ALLELE-SPECIFIC AND LIGHT-DEPENDENT INTERACTION BETWEEN THE HY5 AND COP1 LOCI
    ANG, LH
    DENG, XW
    [J]. PLANT CELL, 1994, 6 (05) : 613 - 628
  • [3] The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling
    Arnold, K
    Bordoli, L
    Kopp, J
    Schwede, T
    [J]. BIOINFORMATICS, 2006, 22 (02) : 195 - 201
  • [4] Attila O, 2006, PLANT CELL, V18, P1975
  • [5] MEME SUITE: tools for motif discovery and searching
    Bailey, Timothy L.
    Boden, Mikael
    Buske, Fabian A.
    Frith, Martin
    Grant, Charles E.
    Clementi, Luca
    Ren, Jingyuan
    Li, Wilfred W.
    Noble, William S.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : W202 - W208
  • [6] Bin L, 2011, GENE DEV, V25, P1029
  • [7] Chun Y K, 2009, PLANT CELL, V21, P2624
  • [8] David D, 2004, CANCER RES, V64, P7226
  • [9] COP1, AN ARABIDOPSIS REGULATORY GENE, ENCODES A PROTEIN WITH BOTH A ZINC-BINDING MOTIF AND A G-BETA HOMOLOGOUS DOMAIN
    DENG, XW
    MATSUI, M
    WEI, N
    WAGNER, D
    CHU, AM
    FELDMANN, KA
    QUAIL, PH
    [J]. CELL, 1992, 71 (05) : 791 - 801
  • [10] COP1 - A REGULATORY LOCUS INVOLVED IN LIGHT-CONTROLLED DEVELOPMENT AND GENE-EXPRESSION IN ARABIDOPSIS
    DENG, XW
    CASPAR, T
    QUAIL, PH
    [J]. GENES & DEVELOPMENT, 1991, 5 (07) : 1172 - 1182