Electronic and Thermoelectric Properties of Layered Sn- and Pb-Doped Ge2Sb2Te5 Alloys Using First Principle Calculations

被引:4
作者
Singh, Janpreet [1 ]
Singh, Gurinder [2 ]
Kaura, Aman [2 ]
Tripathi, S. K. [1 ]
机构
[1] Panjab Univ, Ctr Adv Study Phys, Dept Phys, Chandigarh 160014, India
[2] Panjab Univ, SSG Reg Ctr, Dept UIET, Hoshiarpur, Panjab, India
关键词
Ab initio calculations; phase change materials; doping; electronic properties; thermoelectric properties; PHASE-CHANGE MATERIALS; THIN-FILM; DIFFRACTION; TRANSITION;
D O I
10.1007/s11664-016-4416-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A computational study on stable hexagonal phase of undoped, and Sn- and Pb-doped Ge2Sb2Te5 (GST) phase change materials has been carried out. The electronic structure, lattice dynamics and thermoelectric properties of doped GST have been extensively investigated using ab initio methods with virtual crystal approximation. The hexagonal symmetry of the GST is maintained with the addition of Sn and Pb dopants. The lattice parameters and atomic volume of the Sn-doped GST structure is larger than that of the undoped GST. Electronic band structure calculations show that there is an increase in band gap with the increase in the concentration of Sn (a parts per thousand currency sign4.4 at.%). However, with the addition of a very small amount of Pb, there is a continuous decrease in lattice parameters and band gap values. The calculated energy band structure is then used in combination with the Boltzmann transport equation to calculate the thermoelectric parameters of GST and Sn- and Pb-doped materials. Seebeck coefficient (S), electronic thermal conductivity (kappa (e)) and the thermoelectric figure-of-merit (ZT) have been calculated with the help of BoltzTraP code. It was found that the thermoelectric properties of GST are enhanced with the addition of Sn.
引用
收藏
页码:2950 / 2956
页数:7
相关论文
共 44 条
[1]  
[Anonymous], 2003, HDB CHEM PHYS
[2]   Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers [J].
Bahk, Je-Hyeong ;
Shakouri, Ali .
APPLIED PHYSICS LETTERS, 2014, 105 (05)
[3]   Hall mobility of amorphous Ge2Sb2Te5 [J].
Baily, S. A. ;
Emin, David ;
Li, Heng .
SOLID STATE COMMUNICATIONS, 2006, 139 (04) :161-164
[4]  
Bellaiche L, 2000, PHYS REV B, V61, P7877, DOI 10.1103/PhysRevB.61.7877
[5]   EFFECT OF PRESSURE ON OPTICAL-PROPERTIES OF CRYSTALLINE AS2S3 [J].
BESSON, JM ;
CERNOGORA, J ;
ZALLEN, R .
PHYSICAL REVIEW B, 1980, 22 (08) :3866-3876
[6]   Insights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compounds [J].
Da Silva, Juarez L. F. ;
Walsh, Aron ;
Lee, Hosun .
PHYSICAL REVIEW B, 2008, 78 (22)
[7]   GENERAL-METHODS FOR GEOMETRY AND WAVE-FUNCTION OPTIMIZATION [J].
FISCHER, TH ;
ALMLOF, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (24) :9768-9774
[8]   ABINIT: First-principles approach to material and nanosystem properties [J].
Gonze, X. ;
Amadon, B. ;
Anglade, P. -M. ;
Beuken, J. -M. ;
Bottin, F. ;
Boulanger, P. ;
Bruneval, F. ;
Caliste, D. ;
Caracas, R. ;
Cote, M. ;
Deutsch, T. ;
Genovese, L. ;
Ghosez, Ph. ;
Giantomassi, M. ;
Goedecker, S. ;
Hamann, D. R. ;
Hermet, P. ;
Jollet, F. ;
Jomard, G. ;
Leroux, S. ;
Mancini, M. ;
Mazevet, S. ;
Oliveira, M. J. T. ;
Onida, G. ;
Pouillon, Y. ;
Rangel, T. ;
Rignanese, G. -M. ;
Sangalli, D. ;
Shaltaf, R. ;
Torrent, M. ;
Verstraete, M. J. ;
Zerah, G. ;
Zwanziger, J. W. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2582-2615
[9]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[10]   Hybrid density functional study of electronic and optical properties of phase change memory material: Ge2Sb2Te5 [J].
Kaewmaraya, T. ;
Ramzan, M. ;
Lofas, H. ;
Ahuja, Rajeev .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (03)