On Notions of Output Finite-Time Stability

被引:2
|
作者
Zimenko, Konstantin [1 ]
Efimov, Denis [1 ,2 ]
Polyakov, Andrey [1 ,2 ]
Kremlev, Artem [1 ]
机构
[1] ITMO Univ, Fac Control Syst & Robot, 49 Kronverkskiy Ave, St Petersburg 197101, Russia
[2] Univ Lille, INRIA, CNRS, UMR CRIStAL 9189, F-59000 Lille, France
基金
俄罗斯科学基金会;
关键词
INPUT; STABILIZATION;
D O I
10.23919/ECC.2019.8796039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lyapunov characterizations of output finite-time stability are presented for the system (x) over dot = f(x), y = h(x) which is locally Lipschitz continuous out of the set Y = {x is an element of R-n : h(x) = 0} and continuous on Rn. The definitions are given in the form of K and KL functions. Necessary and sufficient conditions for output finite-time stability are given using Lyapunov functions. The theoretical results are supported by numerical examples.
引用
收藏
页码:186 / 190
页数:5
相关论文
共 50 条
  • [21] Input-output finite-time stability of time-varying linear singular systems
    Yao J.
    Feng J.
    Sun L.
    Zheng Y.
    Journal of Control Theory and Applications, 2012, 10 (3): : 287 - 291
  • [22] Input-output Finite-time Stability of Switched Singular Continuous-time Systems
    Tian Feng
    Baowei Wu
    Yue-E Wang
    YangQuan Chen
    International Journal of Control, Automation and Systems, 2021, 19 : 1828 - 1835
  • [23] Finite-time stability of a class of nonlinear cascaded systems with time-varying output constraints
    Zou, Fangling
    Wu, Kang
    Wu, Yuqiang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (12):
  • [24] Input-output Finite-time Stability of Switched Singular Continuous-time Systems
    Feng, Tian
    Wu, Baowei
    Wang, Yue-E
    Chen, YangQuan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (05) : 1828 - 1835
  • [25] Output feedback finite-time control for a bioreactor system based on a finite-time stable observer
    Wang, Zhao
    Li, Shihua
    Fei, Shumin
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2012, 34 (08) : 998 - 1007
  • [26] Finite-Time Stabilizability, Detectability, and Dynamic Output Feedback Finite-Time Stabilization of Linear Systems
    Amato, F.
    Darouach, M.
    De Tommasi, G.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (12) : 6521 - 6528
  • [27] On an output feedback finite-time stabilization problem
    Hong, YR
    Huang, J
    Xu, YS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (02) : 305 - 309
  • [28] Finite-time output stabilization of the double integrator
    Bernuau, Emmanuel
    Perruquetti, Wilfrid
    Efimov, Denis
    Moulay, Emmanuel
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 5906 - 5911
  • [29] ONE THEOREM ON FINITE-TIME STABILITY
    ANASHKIN, OV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1976, (03): : 34 - 38
  • [30] The finite-time stability of perturbed systems
    Zoghlami, Naim
    Beji, Lotfi
    Mlayeh, Rhouma
    Abichou, Azgal
    2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2012, : 1080 - 1085