On fluid limit for the semiconductors Boltzmann equation

被引:9
作者
Goudon, T
Mellet, A
机构
[1] Univ Nice, CNRS, Lab J A Dieudonne, UMR 6621, F-06108 Nice 02, France
[2] INRIA Sophia, Project CAIMAN, Valbonne, France
[3] Univ Toulouse 3, MIP, UMR 5640, F-31062 Toulouse, France
关键词
semiconductors Boltzmann equation; Pauli principle; detailed balance principle; hydrodynamic limit; Hilbert expansion; Chapman-Enskog expansion;
D O I
10.1016/S0022-0396(02)00096-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the derivation of (non-linear) drift-diffusion equations from the semiconductor Boltzmann equation. Collisions are taken into account through the non-linear Pauli operator, but we do not assume relation on the cross section such as the so-called detailed balance principle. In turn, equilibrium states are implicitly defined. This article follows and completes the contribution of Mellet (Monatsh. Math. 134 (4) (2002) 305-329) where the electric field is given and does not depend on time. Here, we treat the self-consistent problem, the electric potential satisfying the Poisson equation. By means of a Hilbert expansion, we shall formally derive the asymptotic model in the general case. We shall then rigorously prove the convergence in the one-dimensional case by using a modified Hilbert expansion. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:17 / 45
页数:29
相关论文
共 15 条
[1]  
Ashcroft N. W., 1973, SOLID STATE PHYS
[2]   DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE [J].
BARDOS, C ;
SANTOS, R ;
SENTIS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :617-649
[3]  
Degond P, 2000, INDIANA U MATH J, V49, P1175
[4]  
Degond P., 2000, AMS IP STUDIES ADV M, V15, P77
[5]  
Edwards RE., 1994, FUNCTIONAL ANAL THEO
[6]  
EVESON S, 1995, P AM MATH SOC, V125, P3709
[7]  
Golse F., 1992, Asymptotic Analysis, V6, P135
[8]   Equilibrium solutions for the Pauli operator [J].
Goudon, T .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11) :1035-1038
[9]  
Ladyz'enskaya O.A., 1968, LINEAR QUASILINEAR E
[10]  
Markowich P.A., 1990, SEMICONDUCTORS EQUAT