Temperature-driven crossover in the Lieb-Liniger model

被引:10
作者
Kluemper, Andreas [1 ]
Patu, Ovidiu I. [2 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Phys C, D-42097 Wuppertal, Germany
[2] Inst Space Sci, R-077125 Bucharest, Romania
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 05期
关键词
DIMENSIONAL QUANTUM FLUIDS; TONKS-GIRARDEAU GAS; BOSE-GAS; SCHRODINGER MODEL; BOSONS;
D O I
10.1103/PhysRevA.90.053626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The large-distance behavior of the density-density correlation function in the Lieb-Liniger model at finite temperature is investigated by means of the recently derived nonlinear integral equations characterizing the correlation lengths. We present extensive numerical results covering all the physical regimes from weak to strong interaction and all temperatures. We find that the leading term of the asymptotic expansion becomes oscillatory at a critical temperature which decreases with the strength of the interaction. As we approach the Tonks-Girardeau limit the asymptotic behavior becomes more complex with a double crossover of the largest and next-largest correlation lengths. The crossovers exist only for intermediate couplings and vanish for gamma = 0 and infinity.
引用
收藏
页数:5
相关论文
共 35 条
  • [1] INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY
    BELAVIN, AA
    POLYAKOV, AM
    ZAMOLODCHIKOV, AB
    [J]. NUCLEAR PHYSICS B, 1984, 241 (02) : 333 - 380
  • [2] OPERATOR DIMENSIONS AND SURFACE EXPONENTS FOR THE NON-LINEAR SCHRODINGER MODEL AT T=0
    BERKOVICH, A
    MURTHY, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (19): : 3703 - 3721
  • [3] FINITE-SIZE CORRECTIONS IN THE NON-LINEAR SCHRODINGER MODEL
    BERKOVICH, A
    MURTHY, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07): : L395 - L400
  • [4] CORRELATION-FUNCTIONS OF ONE-DIMENSIONAL BOSE-GAS IN THERMODYNAMIC-EQUILIBRIUM
    BOGOLYUBOV, NM
    KOREPIN, VE
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 60 (02) : 808 - 814
  • [5] Two-body momentum correlations in a weakly interacting one-dimensional Bose gas
    Bouchoule, I.
    Arzamasovs, M.
    Kheruntsyan, K. V.
    Gangardt, D. M.
    [J]. PHYSICAL REVIEW A, 2012, 86 (03):
  • [6] CONFORMAL-INVARIANCE AND UNIVERSALITY IN FINITE-SIZE SCALING
    CARDY, JL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07): : L385 - L387
  • [7] Dynamical density-density correlations in the one-dimensional Bose gas
    Caux, Jean-Sebastien
    Calabrese, Pasquale
    [J]. PHYSICAL REVIEW A, 2006, 74 (03):
  • [8] One dimensional bosons: From condensed matter systems to ultracold gases
    Cazalilla, M. A.
    Citro, R.
    Giamarchi, T.
    Orignac, E.
    Rigol, M.
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (04) : 1405 - 1466
  • [9] Bosonizing one-dimensional cold atomic gases
    Cazalilla, MA
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (07) : S1 - S47
  • [10] Polarizability and dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit at finite temperatures
    Cherny, AY
    Brand, J
    [J]. PHYSICAL REVIEW A, 2006, 73 (02):