In vitro development of zebrafish vascular networks

被引:6
作者
Ibrahim, Muhammad [1 ,2 ]
Richardson, Michael K. [1 ]
机构
[1] Leiden Univ, Inst Biol Leiden, Leiden, Netherlands
[2] Univ Agr Peshawar, Inst Biotechnol & Genet Engn, Peshawar, Pakistan
关键词
Angiogenesis; Embryoid bodies; Explant culture; Microfluidics; Vasculogenesis; Zebrafish; CELL-CULTURE; MICROVASCULAR NETWORKS; ANGIOGENESIS; MODEL; MORPHOGENESIS; VASCULOGENESIS; MIGRATION; EMBRYOS; ASSAY;
D O I
10.1016/j.reprotox.2017.02.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A major limitation to culturing tissues and organs is the lack of a functional vascular network in vitro. The zebrafish possess many useful properties which makes it a promising model for such studies. Unfortunately, methods of culturing endothelial cells from this species are not well characterised. Here, we tried two methods (embryoid body culture and organ explants from transgenic zebrafish kdrl:GFP embryos) to develop in vitro vascular networks. In the kdrl:GFP line, endothelial cells expresses green fluorescent protein, which allows to track the vascular development in live cultures. We found that embryoid bodies showed significantly longer and wider branches of connected endothelial cells when grown in a microfluidic system than in static culture. Similarly, sprouting of kdrl:GFP+ cells from the tissue explants was observed in a 3D hydrogel matrix. This study is a step towards the development of zebrafish vascular networks in vitro. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:102 / 115
页数:14
相关论文
共 79 条
[1]   Molecular regulation of angiogenesis and lymphangiogenesis [J].
Adams, Ralf H. ;
Alitalo, Kari .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (06) :464-478
[2]   Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks [J].
Allen, Patrick ;
Melero-Martin, Juan ;
Bischoff, Joyce .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 5 (04) :E74-E86
[3]   In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract [J].
Arnaoutova, Irina ;
Kleinman, Hynda K. .
NATURE PROTOCOLS, 2010, 5 (04) :628-635
[4]  
Azimi MS, 2016, METHODS MOL BIOL, V1464, P85, DOI 10.1007/978-1-4939-3999-2_8
[5]   Use of the mouse aortic ring assay to study angiogenesis [J].
Baker, Marianne ;
Robinson, Stephen D. ;
Lechertier, Tanguy ;
Barber, Paul R. ;
Tavora, Bernardo ;
D'Amico, Gabriela ;
Jones, Dylan T. ;
Vojnovic, Boris ;
Hodivala-Dilke, Kairbaan .
NATURE PROTOCOLS, 2012, 7 (01) :89-104
[6]   Microfluidic organs-on-chips [J].
Bhatia, Sangeeta N. ;
Ingber, Donald E. .
NATURE BIOTECHNOLOGY, 2014, 32 (08) :760-772
[7]   Engineering the Embryoid Body Microenvironment to Direct Embryonic Stem Cell Differentiation [J].
Bratt-Leal, Andres M. ;
Carpenedo, Richard L. ;
McDevitt, Todd C. .
BIOTECHNOLOGY PROGRESS, 2009, 25 (01) :43-51
[8]   A model for ex vivo renal angiogenesis [J].
Brodsky, SV ;
Smith, M ;
Kashgarian, M ;
Goligorsky, MS .
NEPHRON EXPERIMENTAL NEPHROLOGY, 2003, 93 (01) :E46-E52
[9]   Modulation of endothelial cell migration and angiogenesis: a novel function for the "tandem-repeat" lectin galectin-8 [J].
Cardenas Delgado, Victor M. ;
Nugnes, Lorena G. ;
Colombo, Lucas L. ;
Troncoso, Maria F. ;
Fernandez, Marisa M. ;
Malchiodi, Emilio L. ;
Frahm, Isabel ;
Croci, Diego O. ;
Compagno, Daniel ;
Rabinovich, Gabriel A. ;
Wolfenstein-Todel, Carlota ;
Elola, Maria T. .
FASEB JOURNAL, 2011, 25 (01) :242-254
[10]   Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration [J].
Chavez, Myra N. ;
Aedo, Geraldine ;
Fierro, Fernando A. ;
Allende, Miguel L. ;
Egana, Jose T. .
FRONTIERS IN PHYSIOLOGY, 2016, 7