On the Fredholm alternative for the p-Laplacian

被引:19
作者
Binding, PA [1 ]
Drabek, P
Huang, YX
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ W Bohemia, Dept Math, Pilsen 30614, Czech Republic
[3] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
关键词
Fredholm alternative; the p-Laplacian;
D O I
10.1090/S0002-9939-97-03992-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider {-(\u'\(p-2)u')' = lambda\u\(p-2)u+f(x), x is an element of (0, 1), u(0) = beta u'(0, u'(1)=0, where p > 1 and beta is an element of R boolean OR {infinity} and let lambda(1) be the principal eigenvalue of the problem with f(x) = 0. For lambda = lambda(1), we discuss for which values of p and beta the Fredholm alternative holds.
引用
收藏
页码:3555 / 3559
页数:5
相关论文
共 6 条
[1]  
DRABEK P, 1992, RES NOTES MATH, V264
[2]  
EARL A., 1955, THEORY ORDINARY DIFF
[3]  
Fuik S., 1973, Lecture Notes in Mathematics, V346
[4]  
Huang Y.-X., 1995, DIFF INT EQUA, V8, P429
[5]  
LI W, 1995, NONL ANAL, V24, P185
[6]  
ZEIDLER E, 1990, NONLINEAR FUNCTION A, V2