Discontinuous Galerkin finite element method for the numerical solution of viscous compressible flows

被引:0
作者
Dolejsí, V [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675, Czech Republic
来源
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS | 2004年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the numerical solution of the compressible Navier-Stokes equations with the aid of the discontinuous Galerkin finite element (DG FE) approach with the nonsymmetric interior penalty terms. The linearization of diffusive terms and the treatment of the boundary conditions are discussed. Several numerical examples demonstrating the efficiency of the numerical method are presented.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 10 条
[1]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[2]  
Bassi F, 2000, LECT NOTES COMP SCI, V11, P197
[3]  
BRISTEAU MO, 1987, NOTES NUMERICAL FLUI, V18
[4]  
COCKBURN B, 1999, LECT NOTES COMPUTATI, P69
[5]  
COCKBURN B, 2000, LECT NOTES COMPUTATI, V11
[6]  
DOLEJSI V, 2002, FINITE VOLUMES COMPL, V3, P333
[7]  
DOLEJSI V, UNPUB INT J NUMER ME
[8]  
DOLEJSI V, UNPUB COMPUT METHODS
[9]  
Feistauer M., 2003, MATH COMPUTATIONAL M
[10]  
Toro E. F., 2009, Riemann solvers and numerical methods for fluid dynamics a practical introduction, DOI 10.1007/b79761