Admissibility in quadratically regular problems and recurrence of symmetric Markov chains: Why the connection?

被引:9
作者
Eaton, ML [1 ]
机构
[1] Univ Minnesota, Dept Theoret Stat, Minneapolis, MN 55455 USA
关键词
improper prior distributions; formal posterior distributions; formal Bayes rules; admissibility; symmetric Markov chains; recurrence; transience;
D O I
10.1016/S0378-3758(97)00037-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this expository paper, a sufficient condition is discussed for the almost admissibility of formal Bayes rules in quadratically regular problems. This sufficient condition is equivalent to a recurrence property of a natural symmetric Markov chain constructed from the model and the improper prior. Some simple examples involving translation parameter models illustrate the results. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:231 / 247
页数:17
相关论文
共 21 条
[1]   ON MINIMAX STATISTICAL DECISION PROCEDURES AND THEIR ADMISSIBILITY [J].
BLYTH, CR .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :22-42
[2]  
Diaconis P., 1991, Ann. Appl. Probab., P36
[3]  
Eaton M. L., 1982, STAT DECISION THEORY, Viii, P329
[4]   ESTIMATION OF A LOSS FUNCTION FOR SPHERICALLY SYMMETRICAL DISTRIBUTIONS IN THE GENERAL LINEAR-MODEL [J].
FOURDRINIER, D ;
WELLS, MT .
ANNALS OF STATISTICS, 1995, 23 (02) :571-592
[5]   ADMISSIBILITY OF LINEAR ESTIMATORS IN ONE PARAMETER EXPONENTIAL FAMILY [J].
GHOSH, M ;
MEEDEN, G .
ANNALS OF STATISTICS, 1977, 5 (04) :772-778
[6]  
Hwang J.T., 1984, STAT DECIS, V1, P3
[7]   ESTIMATION OF ACCURACY IN TESTING [J].
HWANG, JT ;
CASELLA, G ;
ROBERT, C ;
WELLS, MT ;
FARRELL, RH .
ANNALS OF STATISTICS, 1992, 20 (01) :490-509
[8]   MINIMAX CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL-DISTRIBUTION [J].
HWANG, JT ;
CASELLA, G .
ANNALS OF STATISTICS, 1982, 10 (03) :868-881
[10]   ADMISSIBLITY, DIFFERENCE-EQUATIONS AND RECURRENCE IN ESTIMATING A POISSON MEAN [J].
JOHNSTONE, I .
ANNALS OF STATISTICS, 1984, 12 (04) :1173-1198