Entanglement Swapping with Photons Generated on Demand by a Quantum Dot

被引:101
作者
Basset, F. Basso [1 ]
Rota, M. B. [1 ]
Schimpf, C. [2 ]
Tedeschi, D. [1 ]
Zeuner, K. D. [3 ]
da Silva, S. F. Covre [2 ]
Reindl, M. [2 ]
Zwiller, V [3 ]
Jons, K. D. [3 ]
Rastelli, A. [2 ]
Trotta, R. [1 ]
机构
[1] Sapienza Univ Rome, Dept Phys, I-00185 Rome, Italy
[2] Johannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria
[3] Royal Inst Technol, Dept Appl Phys, S-10691 Stockholm, Sweden
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
STATE;
D O I
10.1103/PhysRevLett.123.160501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of nonclassical light were used for seminal demonstration of entanglement swapping, but applications in quantum technologies demand push-button operation requiring single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent prerequisites on the efficiency and purity of the generation of entangled states. Here we show a proof-of-concept demonstration of all-photonic entanglement swapping with pairs of polarization-entangled photons generated on demand by a GaAs quantum dot without spectral and temporal filtering. Moreover, we develop a theoretical model that quantitatively reproduces the experimental data and provides insights on the critical figures of merit for the performance of the swapping operation. Our theoretical analysis also indicates how to improve stateof-the-art entangled-photon sources to meet the requirements needed for implementation of quantum dots in long-distance quantum communication protocols.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Entangled photon pairs from semiconductor quantum dots [J].
Akopian, N ;
Lindner, NH ;
Poem, E ;
Berlatzky, Y ;
Avron, J ;
Gershoni, D ;
Gerardot, BD ;
Petroff, PM .
PHYSICAL REVIEW LETTERS, 2006, 96 (13)
[2]   Experimental methods for detecting entanglement -: art. no. 033601 [J].
Altepeter, JB ;
Jeffrey, ER ;
Kwiat, PG ;
Tanzilli, S ;
Gisin, N ;
Acín, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)
[3]   High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy [J].
Basset, Francesco Basso ;
Bietti, Sergio ;
Reindl, Marcus ;
Esposito, Luca ;
Fedorov, Alexey ;
Huber, Daniel ;
Rastelli, Armando ;
Bonera, Emiliano ;
Trotta, Rinaldo ;
Sanguinetti, Stefano .
NANO LETTERS, 2018, 18 (01) :505-512
[4]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[5]   MEASUREMENT OF THE BELL OPERATOR AND QUANTUM TELEPORTATION [J].
BRAUNSTEIN, SL ;
MANN, A .
PHYSICAL REVIEW A, 1995, 51 (03) :R1727-R1730
[6]   Integrated sources of photon quantum states based on nonlinear optics [J].
Caspani, Lucia ;
Xiong, Chunle ;
Eggleton, Benjamin J. ;
Bajoni, Daniele ;
Liscidini, Marco ;
Galli, Matteo ;
Morandotti, Roberto ;
Moss, David J. .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e17100-e17100
[7]   Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna [J].
Chen, Yan ;
Zopf, Michael ;
Keil, Robert ;
Ding, Fei ;
Schmidt, Oliver G. .
NATURE COMMUNICATIONS, 2018, 9
[8]   On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar [J].
Ding, Xing ;
He, Yu ;
Duan, Z. -C. ;
Gregersen, Niels ;
Chen, M. -C. ;
Unsleber, S. ;
Maier, S. ;
Schneider, Christian ;
Kamp, Martin ;
Hoefling, Sven ;
Lu, Chao-Yang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[9]   Mixedness in the Bell violation versus entanglement of formation [J].
Ghosh, S ;
Kar, G ;
Sen, A ;
Sen, U .
PHYSICAL REVIEW A, 2001, 64 (04) :443011-443013
[10]   Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes [J].
Heyn, Ch. ;
Stemmann, A. ;
Koeppen, T. ;
Strelow, Ch. ;
Kipp, T. ;
Grave, M. ;
Mendach, S. ;
Hansen, W. .
APPLIED PHYSICS LETTERS, 2009, 94 (18)