Silicon nanocluster aggregation in SiO2:Si layers

被引:12
作者
Fitting, H. -J. [1 ]
Kourkoutis, L. Fitting [2 ]
Salh, Roushdey [1 ]
Zamoryanskaya, M. V. [3 ]
Schmidt, B. [4 ]
机构
[1] Univ Rostock, Inst Phys, D-18051 Rostock, Germany
[2] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[4] Res Ctr Rossendorf, D-01314 Dresden, Germany
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2010年 / 207卷 / 01期
关键词
SI NANOCRYSTALS; PHASE-SEPARATION; PHOTOLUMINESCENCE; OXYGEN; CATHODOLUMINESCENCE; LUMINESCENCE;
D O I
10.1002/pssa.200925201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Energy-filtered transmission electron microscopy (EFTEM) in combination with electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) have been used to investigate Si+-implanted amorphous silicon dioxide layers and the formation of Si nanoclusters. Therefore, amorphous, thermally grown SiO2 layers on Si substrate were implanted by Si+ ions with an energy of 150 keV and a dose of 5 x 10(16) ions/cm(2) leading to an atomic dopant fraction of about 4 at%. Afterwards a post-implantation thermal annealing has been performed at temperatures T-a=700-1300 degrees C, for 60min in vacuum. This thermal annealing leads to Si cluster formation and a change of the SiOx matrix from about x = 1.923 to 1.929 connected with additional visible luminescence bands in the green-yellow region. CL spectra in the near infrared (NIR) region indicate such Si aggregation by appearance of an additional band in extension of the common NBOHC band at 1.9 eV towards the NIR region. This band shifts with increasing annealing temperatures of the implanted sample to lower energies, probably, due to cluster growth and quantum confinement effects. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:117 / 123
页数:7
相关论文
共 31 条
[1]  
[Anonymous], 2000, Defects in SiO>2 and Related Dielectrics: Science and Technology. NATO Science Series II
[3]  
Fanderlik I., 1991, Silica glass and its application
[4]   Multimodal luminescence spectra of ion-implanted silica [J].
Fitting, HJ ;
Salh, R ;
Barfels, T ;
Schmidt, B .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2005, 202 (13) :R142-R144
[5]   Cathodoluminescence of Ge+, Si+, and O+ implanted SiO2 layers and the role of mobile oxygen in defect transformations [J].
Fitting, HJ ;
Barfels, T ;
Trukhin, AN ;
Schmidt, B ;
Gulans, A ;
von Czarnowski, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 303 (02) :218-231
[6]   Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica [J].
Glinka, YD ;
Lin, SH ;
Chen, YT .
PHYSICAL REVIEW B, 2002, 66 (03) :354041-3540410
[7]   Classification and control of the origin of photoluminescence from Si nanocrystals [J].
Godefroo, S. ;
Hayne, M. ;
Jivanescu, M. ;
Stesmans, A. ;
Zacharias, M. ;
Lebedev, O. I. ;
Van Tendeloo, G. ;
Moshchalkov, V. V. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :174-178
[8]   Optical properties of Si-rich SiO2 films in relation with embedded Si mesoscopic particles [J].
Hayashi, S ;
Yamamoto, K .
JOURNAL OF LUMINESCENCE, 1996, 70 :352-363
[9]   Investigation of postoxidation thermal treatments of Si/SiO2 interface in relationship to the kinetics of amorphous Si suboxide decomposition [J].
Hinds, BJ ;
Wang, F ;
Wolfe, DM ;
Hinkle, CL ;
Lucovsky, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (04) :2171-2176
[10]   Correlation between luminescence and structural properties of Si nanocrystals [J].
Iacona, F ;
Franzò, G ;
Spinella, C .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (03) :1295-1303