Lipschitz regularity of the minimizers of autonomous integral functionals with discontinuous non-convex integrands of slow growth

被引:12
作者
Mariconda, Carlo [1 ]
Treu, Giulia [1 ]
机构
[1] Univ Padua, Dipartimento Matemat & Applicata, I-35121 Padua, Italy
关键词
49-XX;
D O I
10.1007/s00526-006-0059-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L(x, xi) : R-N x R-N -> R be a Borelian function and let (P) be the problem of minimizing integral(b)(a) L(y(t), y'(t)) dt among the absolutely continuous functions with prescribed values at a and b. We give some sufficient conditions that weaken the classical superlinear growth assumption to ensure that the minima of (P) are Lipschitz. We do not assume convexity of L w. r. to xi or continuity of L.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 4 条
[1]   LIPSCHITZ REGULARITY FOR MINIMIZERS OF INTEGRAL FUNCTIONALS WITH HIGHLY DISCONTINUOUS INTEGRANDS [J].
AMBROSIO, L ;
ASCENZI, O ;
BUTTAZZO, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 142 (02) :301-316
[2]   The classical problem of the calculus of variations in the autonomous case: Relaxation and Lipschitzianity of solutions [J].
Cellina, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (01) :415-426
[3]   Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton-Jacobi equations [J].
Dal Maso, G ;
Frankowska, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 48 (01) :39-66
[4]  
Hewitt Edwin, 1975, GRADUATE TEXTS MATH, V25