Performance Analysis of Various Entropy Measures in Categorical Data Clustering

被引:0
作者
Sharma, Shachi [1 ]
Pemo, Sonam [1 ]
机构
[1] South Asian Univ, Dept Comp Sci, New Delhi, India
来源
2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020) | 2020年
关键词
Categorical data; clustering; performance analysis; Renyi entropy; Shannon entropy; Tsallis entropy;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Categorical data clustering is gaining importance in recent years. Shannon entropy based similarity and dissimilarity measures are popular for clustering categorical data. However, there are several other generalized entropy measures like Renyi and Tsallis. The paper presents a thorough comparative study of performance of various entropy measures in clustering categorical data. Exhaustive experimental analysis reveals that Renyi entropy measure outperforms other measures in clustering categorical data.
引用
收藏
页码:592 / 595
页数:4
相关论文
共 27 条
[1]  
Andritsos P, 2004, LECT NOTES COMPUT SC, V2992, P123
[2]  
[Anonymous], 2004, Nonextensive Entropy-Interdisciplinary Applications
[3]  
[Anonymous], 2003, ENTROPY MEASURES MAX
[4]  
Barbara D., 2002, Proceedings of the Eleventh International Conference on Information and Knowledge Management. CIKM 2002, P582, DOI 10.1145/584792.584888
[5]  
Bock H.H., 1989, Conceptual and Numerical Analysis of Data, P12
[6]   An Algorithm for Clustering Categorical Data With Set-Valued Features [J].
Cao, Fuyuan ;
Huang, Joshua Zhexue ;
Liang, Jiye ;
Zhao, Xingwang ;
Meng, Yinfeng ;
Feng, Kai ;
Qian, Yuhua .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (10) :4593-4606
[7]   An entropy-based subspace clustering algorithm for categorical data [J].
Carbonera, Joel Luis ;
Abel, Mara .
2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, :272-277
[8]  
Chen K., 2005, P 17 INT C SCI STAT, P253
[9]  
Elavarsi S. A., 2014, ICTACT J SOFT COMPUT, V4, P715
[10]  
Ester M, 1996, KDD 96, P226, DOI DOI 10.5555/3001460.3001507