Topological Surface State in Epitaxial Zigzag Graphene Nanoribbons

被引:14
作者
Thi Thuy Nhung Nguyen [1 ]
de Vries, Niels [2 ]
Karakachian, Hrag [3 ]
Gruschwitz, Markus [1 ]
Aprojanz, Johannes [1 ]
Zakharov, Alexei A. [4 ,5 ]
Polley, Craig [4 ,5 ]
Balasubramanian, Thiagarajan [4 ,5 ]
Starke, Ulrich [3 ]
Flipse, Cornelis F. J. [2 ]
Tegenkamp, Christoph [1 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09126 Chemnitz, Germany
[2] Eindhoven Univ Technol, Fac Appl Phys, NL-5612 AP Eindhoven, Netherlands
[3] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[4] Max IV Lab, S-22100 Lund, Sweden
[5] Lund Univ, S-22100 Lund, Sweden
基金
荷兰研究理事会;
关键词
zigzag graphene nanoribbons; topological surface state; ballistic transport channel; STM; tight binding; QUANTIZED HALL CONDUCTANCE; EDGE STATES; BALLISTIC TRANSPORT; CONFINEMENT; GROWTH;
D O I
10.1021/acs.nanolett.0c05013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Protected and spin-polarized transport channels are the hallmark of topological insulators, coming along with an intrinsic strong spin-orbit coupling. Here we identified such corresponding chiral states in epitaxially grown zigzag graphene nanoribbons (zz-GNRs), albeit with an extremely weak spin-orbit interaction. While the bulk of the monolayer zz-GNR is fully suspended across a SiC facet, the lower edge merges into the SiC(0001) substrate and reveals a surface state at the Fermi energy, which is extended along the edge and splits in energy toward the bulk. All of the spectroscopic details are precisely described within a tight binding model incorporating a Haldane term and strain effects. The concomitant breaking of time-reversal symmetry without the application of external magnetic fields is supported by ballistic transport revealing a conduction of G = e(2)/h.
引用
收藏
页码:2876 / 2882
页数:7
相关论文
共 54 条
  • [41] Raman spectra of epitaxial graphene on SiC(0001)
    Roehrl, J.
    Hundhausen, M.
    Emtsev, K. V.
    Seyller, Th.
    Graupner, R.
    Ley, L.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (20)
  • [42] Strain-induced time-reversal odd superconductivity in graphene
    Roy, Bitan
    Juricic, Vladimir
    [J]. PHYSICAL REVIEW B, 2014, 90 (04):
  • [43] Strain-induced transitions to quantum chaos and effective time-reversal symmetry breaking in triangular graphene nanoflakes
    Rycerz, Adam
    [J]. PHYSICAL REVIEW B, 2013, 87 (19)
  • [44] Room-Temperature Spin Hall Effect in Graphene/MoS2 van der Waals Heterostructures
    Safeer, C. K.
    Ingla-Aynes, Josep
    Herling, Franz
    Garcia, Jose H.
    Vila, Marc
    Ontoso, Nerea
    Reyes Calvo, M.
    Roche, Stephan
    Hueso, Luis E.
    Casanova, Felix
    [J]. NANO LETTERS, 2019, 19 (02) : 1074 - 1082
  • [45] From Diffusive to Ballistic Transport in Etched Graphene Constrictions and Nanoribbons
    Somanchi, Sowmya
    Terres, Bernat
    Peiro, Julian
    Staggenborg, Maximilian
    Watanabe, Kenji
    Taniguchi, Takashi
    Beschoten, Bernd
    Stampfer, Christoph
    [J]. ANNALEN DER PHYSIK, 2017, 529 (11)
  • [46] Energy gaps in graphene nanoribbons
    Son, Young-Woo
    Cohen, Marvin L.
    Louie, Steven G.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (21)
  • [47] Half-metallic graphene nanoribbons
    Son, Young-Woo
    Cohen, Marvin L.
    Louie, Steven G.
    [J]. NATURE, 2006, 444 (7117) : 347 - 349
  • [48] Scalable templated growth of graphene nanoribbons on SiC
    Sprinkle, M.
    Ruan, M.
    Hu, Y.
    Hankinson, J.
    Rubio-Roy, M.
    Zhang, B.
    Wu, X.
    Berger, C.
    de Heer, W. A.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 727 - 731
  • [49] Probing residual strain in epitaxial graphene layers on 4H-SiC (000(1)over-bar) with Raman spectroscopy
    Strudwick, A. J.
    Creeth, G. L.
    Johansson, N. A. B.
    Marrows, C. H.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (05)
  • [50] Interacting Dirac fermions under a spatially alternating pseudomagnetic field: Realization of spontaneous quantum Hall effect
    Venderbos, Jorn W. F.
    Fu, Liang
    [J]. PHYSICAL REVIEW B, 2016, 93 (19)