Topological Surface State in Epitaxial Zigzag Graphene Nanoribbons

被引:14
作者
Thi Thuy Nhung Nguyen [1 ]
de Vries, Niels [2 ]
Karakachian, Hrag [3 ]
Gruschwitz, Markus [1 ]
Aprojanz, Johannes [1 ]
Zakharov, Alexei A. [4 ,5 ]
Polley, Craig [4 ,5 ]
Balasubramanian, Thiagarajan [4 ,5 ]
Starke, Ulrich [3 ]
Flipse, Cornelis F. J. [2 ]
Tegenkamp, Christoph [1 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09126 Chemnitz, Germany
[2] Eindhoven Univ Technol, Fac Appl Phys, NL-5612 AP Eindhoven, Netherlands
[3] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[4] Max IV Lab, S-22100 Lund, Sweden
[5] Lund Univ, S-22100 Lund, Sweden
基金
荷兰研究理事会;
关键词
zigzag graphene nanoribbons; topological surface state; ballistic transport channel; STM; tight binding; QUANTIZED HALL CONDUCTANCE; EDGE STATES; BALLISTIC TRANSPORT; CONFINEMENT; GROWTH;
D O I
10.1021/acs.nanolett.0c05013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Protected and spin-polarized transport channels are the hallmark of topological insulators, coming along with an intrinsic strong spin-orbit coupling. Here we identified such corresponding chiral states in epitaxially grown zigzag graphene nanoribbons (zz-GNRs), albeit with an extremely weak spin-orbit interaction. While the bulk of the monolayer zz-GNR is fully suspended across a SiC facet, the lower edge merges into the SiC(0001) substrate and reveals a surface state at the Fermi energy, which is extended along the edge and splits in energy toward the bulk. All of the spectroscopic details are precisely described within a tight binding model incorporating a Haldane term and strain effects. The concomitant breaking of time-reversal symmetry without the application of external magnetic fields is supported by ballistic transport revealing a conduction of G = e(2)/h.
引用
收藏
页码:2876 / 2882
页数:7
相关论文
共 54 条
  • [1] Nature of Graphene Edges: A Review
    Acik, Muge
    Chabal, Yves J.
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (07)
  • [2] Nanoscale imaging of electric pathways in epitaxial graphene nanoribbons
    Aprojanz, Johannes
    Bampoulis, Pantelis
    Zakharov, Alexei A.
    Zandvliet, Harold J. W.
    Tegenkamp, Christoph
    [J]. NANO RESEARCH, 2019, 12 (07) : 1697 - 1702
  • [3] Ballistic tracks in graphene nanoribbons
    Aprojanz, Johannes
    Power, Stephen R.
    Bampoulis, Pantelis
    Roche, Stephan
    Jauho, Antti-Pekka
    Zandvliet, Harold J. W.
    Zakharov, Alexei A.
    Tegenkamp, Christoph
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [4] Growth and characterization of sidewall graphene nanoribbons
    Baringhaus, J.
    Aprojanz, J.
    Wiegand, J.
    Laube, D.
    Halbauer, M.
    Huebner, J.
    Oestreich, M.
    Tegenkamp, C.
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (04)
  • [5] Electron Interference in Ballistic Graphene Nanoconstrictions
    Baringhaus, Jens
    Settnes, Mikkel
    Aprojanz, Johannes
    Power, Stephen R.
    Jauho, Antti-Pekka
    Tegenkamp, Christoph
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (18)
  • [6] Exceptional ballistic transport in epitaxial graphene nanoribbons
    Baringhaus, Jens
    Ruan, Ming
    Edler, Frederik
    Tejeda, Antonio
    Sicot, Muriel
    Taleb-Ibrahimi, Amina
    Li, An-Ping
    Jiang, Zhigang
    Conrad, Edward H.
    Berger, Claire
    Tegenkamp, Christoph
    de Heer, Walt A.
    [J]. NATURE, 2014, 506 (7488) : 349 - 354
  • [7] Edge-states in graphene nanoribbons: a combined spectroscopy and transport study
    Baringhaus, Jens
    Edler, Frederik
    Tegenkamp, Christoph
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (39)
  • [8] Electronic states of graphene nanoribbons studied with the Dirac equation
    Brey, L
    Fertig, HA
    [J]. PHYSICAL REVIEW B, 2006, 73 (23):
  • [9] Brey Luis, 2019, Graphene Nanoribbons
  • [10] Atomically precise bottom-up fabrication of graphene nanoribbons
    Cai, Jinming
    Ruffieux, Pascal
    Jaafar, Rached
    Bieri, Marco
    Braun, Thomas
    Blankenburg, Stephan
    Muoth, Matthias
    Seitsonen, Ari P.
    Saleh, Moussa
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    [J]. NATURE, 2010, 466 (7305) : 470 - 473