Asymptotic Distribution with Random Indices for Linear Processes

被引:0
作者
Miao, Yu [1 ]
Gao, Qinghui [1 ]
Zhang, Shuili [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
[2] Pingdingshan Univ, Coll Math & Stat, Pingdingshan, Peoples R China
关键词
Central limit theorem; linear process; m-dependent random variables; CENTRAL-LIMIT-THEOREM; MODERATE DEVIATION PRINCIPLE; MOVING AVERAGE PROCESSES; RANDOM-VARIABLES;
D O I
10.2298/FIL1912925M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following linear process X-n = Sigma C-infinity(i=-infinity)i xi(n-i), n is an element of Z, and establish the central limit theorem of the randomly indexed partial sums S-vn := X-1 + ... + X-vn, where {c(i); i is an element of Z} is a sequence of real numbers, {xi(n); n is an element of Z} is a stationary m-dependent sequence and {v(n); n >= 1} is a sequence of positive integer valued random variables. In addition, in order to show the main result, we prove the central limit theorems for randomly indexed m-dependent random variables, which improve some known results.
引用
收藏
页码:3925 / 3935
页数:11
相关论文
共 36 条
[21]   The Discounted Large Deviation Principle for Autoregressive Processes [J].
Miao, Yu .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (14) :2455-2461
[22]   Asymptotic Normality of Autoregressive Processes [J].
Miao, Yu .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) :1077-1085
[23]   Moderate deviation principle for autoregressive processes [J].
Miao, Yu ;
Shen, Si .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (09) :1952-1961
[24]   Large Deviation Principles for Moving Average Processes of Real Stationary Sequences [J].
Miao, Yu .
ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (02) :177-184
[25]  
Peligrad M, 1997, ANN PROBAB, V25, P443
[26]   Central limit theorem for stationary linear processes [J].
Peligrad, Magda ;
Utev, Sergey .
ANNALS OF PROBABILITY, 2006, 34 (04) :1608-1622
[27]  
Renyi A., 1963, ACTA MATH ACAD SCI H, V11, P97, DOI DOI 10.1007/BF02020627
[28]  
Renyi A., 1958, Acta Mathematica Academiae Scientiarum Hungaricae, V9, P215
[29]   LIMIT THEOREMS FOR SEQUENCES OF RANDOM VARIABLES WITH SEQUENCES OF RANDOM INDECES [J].
RICHTER, W .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (01) :74-&
[30]  
Shang Y. L., 2012, ISRN PROBABILITY STA