Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes

被引:2678
|
作者
Tsai, Miao-Chih [1 ,2 ]
Manor, Ohad [3 ]
Wan, Yue [1 ,2 ]
Mosammaparast, Nima [4 ,5 ]
Wang, Jordon K. [1 ,2 ]
Lan, Fei [4 ,5 ,6 ]
Shi, Yang [4 ,5 ]
Segal, Eran [3 ]
Chang, Howard Y. [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Howard Hughes Med Inst, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Program Epithelial Biol, Stanford, CA 94305 USA
[3] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[4] Harvard Univ, Sch Med, Dept Pathol, Cambridge, MA 02138 USA
[5] Childrens Hosp Boston, Dept Med, Div New Born Med, Cambridge, MA 02138 USA
[6] Constellat Pharmaceut, Cambridge, MA 02142 USA
关键词
CHROMATIN-STRUCTURE; GENE-EXPRESSION; X-CHROMOSOME; DEMETHYLATION; PROTEIN; CELLS; STATE; LSD1;
D O I
10.1126/science.1192002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
引用
收藏
页码:689 / 693
页数:5
相关论文
共 50 条
  • [1] Modular function of long noncoding RNA, COLDAIR, in the vernalization response
    Kim, Dong-Hwan
    Xi, Yanpeng
    Sung, Sibum
    PLOS GENETICS, 2017, 13 (07):
  • [2] Chromatin remodeling complexes in the assembly of long noncoding RNA-dependent nuclear bodies
    Kawaguchi, Tetsuya
    Hirose, Tetsuro
    NUCLEUS, 2015, 6 (06) : 462 - 467
  • [3] The emerging molecular biology toolbox for the study of long noncoding RNA biology
    Fok, Ezio T.
    Scholefield, Janine
    Fanucchi, Stephanie
    Mhlanga, Musa M.
    EPIGENOMICS, 2017, 9 (10) : 1317 - 1327
  • [4] Long Noncoding RNA: Genome Organization and Mechanism of Action
    Akhade, Vijay Suresh
    Pal, Debosree
    Kanduri, Chandrasekhar
    LONG NON CODING RNA BIOLOGY, 2017, 1008 : 47 - 74
  • [5] Long Noncoding RNA and Epigenetic Regulation
    Chen Yu-Ning
    Xiong Xing-Dong
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2014, 41 (08) : 723 - 730
  • [6] Relationship of long noncoding RNA and viruses
    Ding, Yao-zhong
    Zhang, Zhong-wang
    Liu, Ya-li
    Shi, Chong-xu
    Zhang, Jie
    Zhang, Yong-Guang
    GENOMICS, 2016, 107 (04) : 150 - 154
  • [7] Mining long noncoding RNA in livestock
    Weikard, R.
    Demasius, W.
    Kuehn, C.
    ANIMAL GENETICS, 2017, 48 (01) : 3 - 18
  • [8] Long noncoding RNA transcriptome of plants
    Liu, Jun
    Wang, Huan
    Chua, Nam-Hai
    PLANT BIOTECHNOLOGY JOURNAL, 2015, 13 (03) : 319 - 328
  • [9] Long Noncoding RNA in Hematopoiesis and Immunity
    Satpathy, Ansuman T.
    Chang, Howard Y.
    IMMUNITY, 2015, 42 (05) : 792 - 804
  • [10] Long Noncoding RNA Analyses for Osteoporosis Risk in Caucasian Women
    Zhou, Yu
    Xu, Chao
    Zhu, Wei
    He, Hao
    Zhang, Lan
    Tang, Beisha
    Zeng, Yong
    Tian, Qing
    Deng, Hong-Wen
    CALCIFIED TISSUE INTERNATIONAL, 2019, 105 (02) : 183 - 192