Inversion layer electron mobility distribution in fully-depleted silicon-on-insulator MOSFETs

被引:3
作者
Umana-Membreno, G. A. [1 ]
Akhavan, N. D. [1 ]
Antoszewski, J. [1 ]
Faraone, L. [1 ]
Cristoloveanu, S. [2 ]
机构
[1] Univ Western Australia, Dept Elect Elect & Comp Engn, Crawley, WA 6009, Australia
[2] Grenoble INP Minatec, IMEP LAHC, BP 257, F-38016 Grenoble, France
基金
澳大利亚研究理事会; 欧盟地平线“2020”;
关键词
FD-SOI; Magnetoresistance; Mobility spectrum analysis; MOSFET; Mobility distribution; SPECTRUM ANALYSIS; TRANSPORT;
D O I
10.1016/j.sse.2021.108074
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetic-field dependent geometrical magnetoresistance measurements and high-resolution mobility spectrum analysis have been employed to characterise the inversion-layer electron mobility distribution in fully-depleted silicon-on-insulator MOS transistors. The results reveal that the room-temperature electron population in the 12 nm thick Si channel layer is characterised by a broad electron mobility distribution that significantly departs from the ideal single-value discrete carrier approximation. At temperatures below 60 K, the linewidth of the distribution is shown to become significantly narrower, approaching a delta-like function at 30 K. Self-consistent Schro center dot dinger-Poisson numerical calculations suggest that, since the total carrier population at 295 K is comprised of electrons in the ground-state level of the two subband ladders, intervalley scattering and phonon scattering will significantly influence the linewidth of the mobility distribution in the transistor channel. To the best of our knowledge, electron mobility distributions in Si-based devices have not been previously studied nor resolved in such detail.
引用
收藏
页数:7
相关论文
共 21 条
  • [1] Application of quantitative mobility-spectrum analysis to multilayer HgCdTe structures
    Antoszewski, J
    Faraone, L
    Vurgaftman, I
    Meyer, JR
    Hoffman, CA
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2004, 33 (06) : 673 - 683
  • [2] Thermal broadening of electron mobility distribution in AlGaN/AlN/GaN heterostructures
    Asgari, A.
    Faraone, L.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (05)
  • [3] DETERMINATION OF ELECTRICAL TRANSPORT-PROPERTIES USING A NOVEL MAGNETIC FIELD-DEPENDENT HALL TECHNIQUE
    BECK, WA
    ANDERSON, JR
    [J]. JOURNAL OF APPLIED PHYSICS, 1987, 62 (02) : 541 - 544
  • [4] nextnano: General purpose 3-D simulations
    Birner, Stefan
    Zibold, Tobias
    Andlauer, Till
    Kubis, Tillmann
    Sabathil, Matthias
    Trellakis, Alex
    Vogl, Peter
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) : 2137 - 2142
  • [5] Casse M., 2008, 2008 Symposium on VLSI Technology, P170, DOI 10.1109/VLSIT.2008.4588606
  • [6] Application of Bryan's algorithm to the mobility spectrum analysis of semiconductor devices
    Chrastina, D
    Hague, JP
    Leadley, DR
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (10) : 6583 - 6590
  • [7] Electron mobility in extremely thin single-gate silicon-on-insulator inversion layers
    Gámiz, F
    Roldán, JB
    Cartujo-Cassinello, P
    Carceller, JE
    López-Villanueva, JA
    Rodriguez, S
    [J]. JOURNAL OF APPLIED PHYSICS, 1999, 86 (11) : 6269 - 6275
  • [8] Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion
    Gamiz, F
    Fischetti, MV
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (10) : 5478 - 5487
  • [9] Mobility spectrum computational analysis using a maximum entropy approach
    Kiatgamolchai, S
    Myronov, M
    Mironov, OA
    Kantser, VG
    Parker, EHC
    Whall, TE
    [J]. PHYSICAL REVIEW E, 2002, 66 (03):
  • [10] Magnetoresistance characterization of nanometer Si metal-oxide-semiconductor transistors
    Meziani, YM
    Lusakowski, J
    Knap, W
    Dyakonova, N
    Teppe, F
    Romanjek, K
    Ferrier, M
    Clerc, R
    Ghibaudo, G
    Boeuf, F
    Skotnicki, T
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 96 (10) : 5761 - 5765