Probing Diffusive Dynamics of Natural Tubule Nanoclays with Machine Learning

被引:16
作者
Iakovlev, Ilia A. [4 ]
Deviatov, Alexander Y. [1 ]
Lvov, Yuri [2 ]
Fakhrullina, Golnur [3 ]
Fakhrullin, Rawil F. [3 ]
Mazurenko, Vladimir V. [4 ]
机构
[1] Ural Fed Univ, Theoret Phys & Appl Math Dept, Ekaterinburg 620002, Russia
[2] Louisiana Tech Univ, Inst Micromfg, Ruston, LA 71272 USA
[3] Kazan Fed Univ, Inst Fundamental Med & Biol, Kazan 420008, Russia
[4] Ural Fed Univ, Theoret Phys & Appl Math Dept, Ekaterinburg 620002, Russia
基金
俄罗斯科学基金会;
关键词
halloysite; sepiolite; diffusion motion; dark-field microscopy; machine learning; HALLOYSITE CLAY NANOTUBES; BROWNIAN-MOTION;
D O I
10.1021/acsnano.1c11025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reproducibility of the experimental results and object of study itself is one of the basic principles in science. But what if the object characterized by technologically important properties is natural and cannot be artificially reproduced oneto-one in the laboratory? The situation becomes even more complicated when we are interested in exploring stochastic properties of a natural system and only a limited set of noisy experimental data is available. In this paper we address these problems by exploring diffusive motion of some natural clays, halloysite and sepiolite, in a liquid environment. By using a combination of dark-field microscopy and machine learning algorithms, a quantitative theoretical characterization of the nanotubes' rotational diffusive dynamics is performed. Scanning the experimental video with the gradient boosting tree method, we can trace time dependence of the diffusion coefficient and probe different regimes of nonequilibrium rotational dynamics that are due to contacts with surfaces and other experimental imperfections. The method we propose is of general nature and can be applied to explore diffusive dynamics of various biological systems in real time.
引用
收藏
页码:5867 / 5873
页数:7
相关论文
共 35 条
[1]  
[Anonymous], KERAS
[2]  
Bisong E., 2019, Google Colaboratory. Building Machine Learning and Deep Learning Models on Google Cloud Platform, P59, DOI [DOI 10.1007/978-1-4842-4470-87, 10.1007/978-1-4842-4470-8_19, DOI 10.1007/978-1-4842-4470-8_19]
[3]   Measurement of anomalous diffusion using recurrent neural networks [J].
Bo, Stefano ;
Schmidt, Falko ;
Eichhorn, Ralf ;
Volpe, Giovanni .
PHYSICAL REVIEW E, 2019, 100 (01)
[4]   Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction [J].
Castro-Smirnov, Fidel Antonio ;
Pietrement, Olivier ;
Aranda, Pilar ;
Le Cam, Eric ;
Ruiz-Hitzky, Eduardo ;
Lopez, Bernard S. .
APPLIED CLAY SCIENCE, 2020, 191
[5]   Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating [J].
Cavallaro, Giuseppe ;
Milioto, Stefana ;
Svetlana, Konnova ;
Fakhrullina, Golnur ;
Akhatova, Farida ;
Lazzara, Giuseppe ;
Fakhrullin, Rawil ;
Lvov, Yuri .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (21) :24348-24362
[6]   Brownian Motion of Arbitrarily Shaped Particles in Two Dimensions [J].
Chakrabarty, Ayan ;
Konya, Andrew ;
Wang, Feng ;
Selinger, Jonathan V. ;
Sun, Kai ;
Wei, Qi-Huo .
LANGMUIR, 2014, 30 (46) :13844-13853
[7]   Recurrent Network Classifier for Ultrafast Skyrmion Dynamics [J].
Deviatov, A. Y. ;
Iakovlev, I. A. ;
Mazurenko, V. V. .
PHYSICAL REVIEW APPLIED, 2019, 12 (05)
[8]   Ultrasmall, Bright, and Photostable Fluorescent Core-Shell Aluminosilicate Nanoparticles for Live-Cell Optical Super-Resolution Microscopy [J].
Erstling, Jacob A. ;
Hinckley, Joshua A. ;
Bag, Nirmalya ;
Hersh, Jessica ;
Feuer, Grant B. ;
Lee, Rachel ;
Malarkey, Henry F. ;
Yu, Fei ;
Ma, Kai ;
Baird, Barbara A. ;
Wiesner, Ulrich B. .
ADVANCED MATERIALS, 2021, 33 (08)
[9]   Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research [J].
Fakhrullin, Rawil ;
Nigamatzyanova, Laysan ;
Fakhrullina, Golnur .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 772
[10]  
Fakhrullina GI, 2015, ENVIRON SCI-NANO, V2, P54, DOI [10.1039/C4EN00135D, 10.1039/c4en00135d]