Polar motion predictions for up to 10 days into the future are obtained from predicted states of the atmosphere, ocean and continental hydrosphere in a hind-cast experiment covering 2003-2008. High-frequency mass variations within the geophysical fluids are the main cause of wide-band stochastic signals not considered in the presently used statistical prediction approach of IERS bulletin A for polar motion. Taking EAM functions based on forecasted model states, derived from ECMWF medium-range forecasts and corresponding LSDM and OMCT simulations, into account the prediction errors are reduced by 26%. The effective forecast length of the model combination is found to be 7 days, primarily limited by the accuracy of the forecasted atmospheric wind fields. Highest improvements are found for forecast days 4-5 with prediction skill scores of the polar motion excitation functions improved by a factor up to 5. Whereas bulletin A forecasts can explain the observed variance within the first 10 days only by up to 40%, half of the model forecasts reach relative explained variances between 40 and 80%.