Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience

被引:20
|
作者
Zhang, Mengbo [1 ]
Liu, Ranbin [1 ]
Li, Yaxuan [1 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sino Dutch R&D Ctr Future Wastewater Treatment Te, Key Lab Urban Stormwater Syst & Water Environm, Minist Educ, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
water supply resilience; atmospheric water harvesting; fog collection; refrigerated atmospheric water extraction; climate change; FOG-WATER; FRESH-WATER; DRINKING-WATER; COLLECTION EFFICIENCY; POTABLE WATER; AIR; SYSTEM; GENERATOR; PERFORMANCE; RESOURCES;
D O I
10.3390/su14137783
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The unequivocal global warming has an explicit impact on the natural water cycle and resultantly leads to an increasing occurrence of extreme weather events which in turn bring challenges and unavoidable destruction to the urban water supply system. As such, diversifying water sources is a key solution to building the resilience of the water supply system. An atmospheric water harvesting can capture water out of the air and provide a point-of-use water source directly. Currently, a series of atmospheric water harvesting have been proposed and developed to provide water sources under various moisture content ranging from 30-80% with a maximum water collection rate of 200,000 L/day. In comparison to conventional water source alternatives, atmospheric water harvesting avoids the construction of storage and distribution grey infrastructure. However, the high price and low water generation rate make this technology unfavorable as a viable alternative to general potable water sources whereas it has advantages compared with bottled water in both cost and environmental impacts. Moreover, atmospheric water harvesting can also provide a particular solution in the agricultural sector in countries with poor irrigation infrastructure but moderate humidity. Overall, atmospheric water harvesting could provide communities and/or cities with an indiscriminate solution to enhance water supply resilience. Further research and efforts are needed to increase the water generation rate and reduce the cost, particularly via leveraging solar energy.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Biomass-gasification-based atmospheric water harvesting in India
    Chaitanya, Bathina
    Bahadur, Vaibhav
    Thakur, Ajay D.
    Raj, Rishi
    ENERGY, 2018, 165 : 610 - 621
  • [22] Research Progress on Hygroscopic Agents for Atmospheric Water Harvesting Systems
    Bai, Qi
    Zhou, Wanlai
    Cui, Wenzhong
    Qi, Zhiyong
    MATERIALS, 2024, 17 (03)
  • [23] The minimum work requirements for atmospheric water harvesting
    Swanson, Richard M.
    HELIYON, 2023, 9 (06)
  • [24] Towards a better understanding of atmospheric water harvesting (AWH) technology
    Wang, Menglu
    Liu, Enke
    Jin, Tao
    Zafar, Saud-uz
    Mei, Xurong
    Fauconnier, Marie-Laure
    De Clerck, Caroline
    WATER RESEARCH, 2024, 250
  • [25] Modifying water sorption properties with polymer additives for atmospheric water harvesting applications
    Entezari, Akram
    Ejeian, Mojtaba
    Wang, Ruzhu
    APPLIED THERMAL ENGINEERING, 2019, 161
  • [26] Thermodynamic limits of atmospheric water harvesting
    Rao, Akshay K.
    Fix, Andrew J.
    Yang, Yun Chi
    Warsinger, David M.
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (10) : 4025 - 4037
  • [27] Sustainable water production with an innovative thermoelectric-based atmospheric water harvesting system
    Sanaye, Sepehr
    Shourabi, Ali
    Borzuei, Daryoosh
    ENERGY REPORTS, 2023, 10 : 1339 - 1355
  • [28] Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems
    Bai, Zhaoyuan
    Wang, Pengfei
    Xu, Jiaxing
    Wang, Ruzhu
    Li, Tingxian
    SCIENCE BULLETIN, 2024, 69 (05) : 671 - 687
  • [29] Water vapor mass transfer in alginate-graphite bio-based hydrogel for atmospheric water harvesting
    Gentile, Vincenzo
    Calo, Matteo
    Bozlar, Michael
    Simonetti, Marco
    Meggers, Forrest
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 219
  • [30] Investigating Adsorption-Based Atmospheric Water Harvesting Potential for Pakistan
    Bilal, Muhammad
    Sultan, Muhammad
    Majeed, Faizan
    Farooq, Muhammad
    Sajjad, Uzair
    Ibrahim, Sobhy M.
    Khan, Muhammad Usman
    Azizi, Shohreh
    Javaid, Muhammad Yasar
    Ahmad, Riaz
    SUSTAINABILITY, 2022, 14 (19)