The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing

被引:56
|
作者
Dong, Huirong [1 ]
Huang, Yong [1 ]
Wang, Kejian [1 ]
机构
[1] Chinese Acad Agr Sci, China Natl Rice Res Inst, State Key Lab Rice Biol, Hangzhou 310006, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR; Cas; genome editing; herbicide resistance; application; DIRECTED EVOLUTION; TOLERANT CROPS; 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE; TARGETED MUTAGENESIS; WEED MANAGEMENT; MOLECULAR-BASES; GENOMIC DNA; RICE; RNA; ENDONUCLEASE;
D O I
10.3390/genes12060912
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid increase in herbicide-resistant weeds creates a huge challenge to global food security because it can reduce crop production, causing considerable losses. Combined with a lack of novel herbicides, cultivating herbicide-resistant crops becomes an effective strategy to control weeds because of reduced crop phytotoxicity, and it expands the herbicidal spectrum. Recently developed clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas)-mediated genome editing techniques enable efficiently targeted modification and hold great potential in creating desired plants with herbicide resistance. In the present review, we briefly summarize the mechanism responsible for herbicide resistance in plants and then discuss the applications of traditional mutagenesis and transgenic breeding in cultivating herbicide-resistant crops. We mainly emphasize the development and use of CRISPR/Cas technology in herbicide-resistant crop improvement. Finally, we discuss the future applications of the CRISPR/Cas system for developing herbicide-resistant crops.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants
    Han, Yun-Jeong
    Kim, Jeong-Il
    PLANT BIOTECHNOLOGY REPORTS, 2019, 13 (05) : 447 - 457
  • [2] Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants
    Kumar, Manoj
    Prusty, Manas Ranjan
    Pandey, Manish K.
    Singh, Prashant Kumar
    Bohra, Abhishek
    Guo, Baozhu
    Varshney, Rajeev K.
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [3] CRISPR/Cas9-mediated genome editing in plants
    Liu, Xuejun
    Xie, Chuanxiao
    Si, Huaijun
    Yang, Jinxiao
    METHODS, 2017, 121 : 94 - 102
  • [4] Epigenetic Footprints of CRISPR/Cas9-Mediated Genome Editing in Plants
    Lee, Jun Hyung
    Mazarei, Mitra
    Pfotenhauer, Alexander C.
    Dorrough, Aubrey B.
    Poindexter, Magen R.
    Hewezi, Tarek
    Lenaghan, Scott C.
    Graham, David E.
    Stewart, C. Neal, Jr.
    FRONTIERS IN PLANT SCIENCE, 2020, 10
  • [5] CRISPR/Cas9-mediated genome editing in Hevea brasiliensis
    Dai, Xuemei
    Yang, Xianfeng
    Wang, Chun
    Fan, Yueting
    Xin, Shichao
    Hua, Yuwei
    Wang, Kejian
    Huang, Huasun
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 164
  • [6] CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders
    Ugalde, Laura
    Fananas, Sara
    Torres, Raul
    Quintana-Bustamante, Oscar
    Rio, Paula
    CYTOTHERAPY, 2023, 25 (03) : 277 - 285
  • [7] Mosaicism in CRISPR/Cas9-mediated genome editing
    Mehravar, Maryam
    Shirazi, Abolfazl
    Nazari, Mahboobeh
    Banan, Mehdi
    DEVELOPMENTAL BIOLOGY, 2019, 445 (02) : 156 - 162
  • [8] Advances in CRISPR/Cas9-mediated genome editing on vegetable crops
    Tian, Shou-Wei
    Xing, Si-Nian
    Xu, Yong
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2021, 57 (04) : 672 - 682
  • [9] Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing
    Fangquan Wang
    Yang Xu
    Wenqi Li
    Zhihui Chen
    Jun Wang
    Fangjun Fan
    Yajun Tao
    Yanjie Jiang
    Qian-Hao Zhu
    Jie Yang
    TheCropJournal, 2021, 9 (02) : 305 - 312
  • [10] An Era of CRISPR/Cas9-mediated Plant Genome Editing
    Khurshid, Haris
    Jan, Sohail Ahmad
    Shinwari, Zabta Khan
    Jamal, Muhammad
    Shah, Sabir Hussain
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2018, 26 : 47 - 54