ASYMPTOTIC ENUMERATION OF k-EDGE-COLORED k-REGULAR GRAPHS

被引:3
作者
McLeod, Jeanette C. [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
matchings; graph coloring; asymptotic enumeration; MATCHINGS;
D O I
10.1137/080725556
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(k, n) be the collection of all sets of k disjoint perfect matchings in a complete graph with 2n vertices. We prove that if k = p(n(5/6)), then vertical bar P(k, n)vertical bar similar to 1/k! ((2n)/2(n)n!)k ((2n)/(2n)(k)(2n - k)!)n . (1 - k/2n)(n/2)e(k/4) for n -> infinity. This improves upon an existing result of Bollobas [Combinatorics, London Math. Soc. Lecture Note Ser. 52, Cambridge University Press, Cambridge, New York, 1981, pp. 80-102] who solved this problem for constant k, and a more recent result of Lieby et al. [Combin. Probab. Comput., 18 (2009), pp. 533-549] where an estimate is obtained for k = o(n(1/3)).
引用
收藏
页码:2178 / 2197
页数:20
相关论文
共 12 条
[1]  
Bollobas B., 1981, LONDON MATH SOC LECT, V52, P80
[2]   MATCHINGS AND WALKS IN GRAPHS [J].
GODSIL, CD .
JOURNAL OF GRAPH THEORY, 1981, 5 (03) :285-297
[3]   ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES [J].
GODSIL, CD ;
MCKAY, BD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) :19-44
[4]   HERMITE-POLYNOMIALS AND A DUALITY RELATION FOR MATCHINGS POLYNOMIALS [J].
GODSIL, CD .
COMBINATORICA, 1981, 1 (03) :257-262
[5]   THEORY OF MONOMER-DIMER SYSTEMS [J].
HEILMANN, OJ ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 25 (03) :190-&
[6]   Subgraphs of Random k-Edge-Coloured k-Regular Graphs [J].
Lieby, Paulette ;
McKay, Brendan D. ;
McLeod, Jeanette C. ;
Wanless, Ian M. .
COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (04) :533-549
[7]  
MCKAY B, 1983, EUR J COMBIN, V4, P149
[8]   THE EXPECTED EIGENVALUE DISTRIBUTION OF A LARGE REGULAR GRAPH [J].
MCKAY, BD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 40 (OCT) :203-216
[9]  
MCKAY BD, 1998, ELECTRON J COMB, V5, P11
[10]  
MCLEOD JC, 2007, THESIS AUSTR NATL U