Hardening machine learning denial of service (DoS) defences against adversarial attacks in IoT smart home networks

被引:48
|
作者
Anthi, Eirini [1 ]
Williams, Lowri [1 ]
Laved, Amir [1 ]
Burnap, Pete [1 ]
机构
[1] Cardiff Univ, Sch Comp Sci Informat, Cardiff, Wales
基金
英国工程与自然科学研究理事会;
关键词
Internet of things (IoT); Smart homes; Networking; Supervised machine learning; Adversarial machine learning; Attack detection; Intrusion detection systems; INTERNET; THINGS;
D O I
10.1016/j.cose.2021.102352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient automated detection of cyberattacks in Internet of Things (IoT) networks. However, this has also created an additional attack vector; the machine learning models which support the IDS's decisions may also be subject to cyberattacks known as Adversarial Machine Learning (AML). In the context of IoT, AML can be used to manipulate data and network traffic that traverse through such devices. These perturbations increase the confusion in the decision boundaries of the machine learning classifier, where malicious network packets are often miss-classified as being benign. Consequently, such errors are bypassed by machine learning based detectors, which increases the potential of significantly delaying attack detection and further consequences such as personal information leakage, damaged hardware, and financial loss. Given the impact that these attacks may have, this paper proposes a rule-based approach towards generating AML attack samples and explores how they can be used to target a range of supervised machine learning classifiers used for detecting Denial of Service attacks in an IoT smart home network. The analysis explores which DoS packet features to perturb and how such adversarial samples can support increasing the robustness of supervised models using adversarial training. The results demonstrated that the performance of all the top performing classifiers were affected, decreasing a maximum of 47.2 percentage points when adversarial samples were present. Their performances improved following adversarial training, demonstrating their robustness towards such attacks. Crown Copyright (c) 2021 Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Apollon: A robust defense system against Adversarial Machine Learning attacks in Intrusion Detection Systems
    Paya, Antonio
    Arroni, Sergio
    Garcia-Diaz, Vicente
    Gomez, Alberto
    COMPUTERS & SECURITY, 2024, 136
  • [32] Robust detection of unknown DoS/DDoS attacks in IoT networks using a hybrid learning model
    Nguyen, Xuan-Ha
    Le, Kim-Hung
    INTERNET OF THINGS, 2023, 23
  • [33] Adversarial Attacks Against Machine Learning-Based Resource Provisioning Systems
    Nazari, Najmeh
    Makrani, Hosein Mohammadi
    Fang, Chongzhou
    Omidi, Behnam
    Rafatirad, Setareh
    Sayadi, Hossein
    Khasawneh, Khaled N.
    Homayoun, Houman
    IEEE MICRO, 2023, 43 (05) : 35 - 44
  • [34] Resilient Machine Learning (rML) Against Adversarial Attacks on Industrial Control Systems
    Yao, Likai
    Shao, Sicong
    Hariri, Salim
    2023 20TH ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, AICCSA, 2023,
  • [35] A comparative analysis of various machine learning methods for anomaly detection in cyber attacks on IoT networks
    Inuwa, Muhammad Muhammad
    Das, Resul
    INTERNET OF THINGS, 2024, 26
  • [36] ML-DDoSnet: IoT Intrusion Detection Based on Denial-of-Service Attacks Using Machine Learning Methods and NSL-KDD
    Esmaeili, Mona
    Goki, Seyedamiryousef Hosseini
    Masjidi, Behnam Hajipour Khire
    Sameh, Mahdi
    Gharagozlou, Hamid
    Mohammed, Amin Salih
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [37] Mitigating service-oriented attacks using context-based trust for smart cities in IoT networks
    Altaf, Ayesha
    Abbas, Haider
    Iqbal, Faiza
    Khan, Malik Muhammad Zaki Murtaza
    Rauf, Abdul
    Kanwal, Tehsin
    JOURNAL OF SYSTEMS ARCHITECTURE, 2021, 115
  • [38] Rigorous Evaluation of Machine Learning-based Intrusion Detection Against Adversarial Attacks
    Gungor, Onat
    Li, Elvin
    Shang, Zhengli
    Guo, Yutong
    Chen, Jing
    Davis, Johnathan
    Rosing, Tajana
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2024, : 152 - 158
  • [39] Using Honeypots in a Decentralized Framework to Defend Against Adversarial Machine-Learning Attacks
    Younis, Fadi
    Miri, Ali
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY WORKSHOPS, 2019, 11605 : 24 - 48
  • [40] A Countermeasure Method Using Poisonous Data Against Poisoning Attacks on IoT Machine Learning
    Chiba, Tomoki
    Sei, Yuichi
    Tahara, Yasuyuki
    Ohsuga, Akihiko
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2021, 15 (02) : 215 - 240