Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis

被引:5
|
作者
Cerejeiras, P. [1 ]
Ferreira, M. [1 ]
Kaehler, U. [1 ]
Sommen, F. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
关键词
spherical continuous wavelet transform; Mobius transformations; wavelet frames;
D O I
10.3934/cpaa.2007.6.619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a continuous wavelet transform (CWT) on the sphere Sn-1 based on the conformal group of the sphere, the Lorentz group Spin(1,n). For this purpose, we present a short survey on the existing techniques of continuous wavelet transform and of conformal transformations on the unit sphere. We decompose the conformal group into the maximal compact subgroup of rotations Spin(n) and the set of Mobius transformations of the form phi(a)(x) = (x - a) (1 + ax)(-1), where a is an element of B-n and B-n denotes the unit ball in R-n. Based on a study of the influence of the parameter a arising in the definition of dilations/contract ions on the sphere we define a class of local conformal dilation operators and consequently a family of continuous wavelet transforms for the Hilbert space of square integrable functions on the sphere L-2(Sn-1) and the Hardy space H-2. In the end we construct Banach frames for our wavelets and prove Jackson-type theorems for the best n-point approximation.
引用
收藏
页码:619 / 641
页数:23
相关论文
共 50 条
  • [1] The continuous wavelet transform in Clifford analysis
    Brackx, F
    Sommen, F
    CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 9 - 26
  • [2] Clifford analysis and the continuous spherical wavelet transform
    Cerejeiras, Paula
    Ferreira, Milton
    Kahler, Uwe
    WAVELET ANALYSIS AND APPLICATIONS, 2007, : 173 - +
  • [3] The Wavelet Transform in Clifford Analysis
    Jan Cnops
    Computational Methods and Function Theory, 2001, 1 (2) : 353 - 374
  • [4] The Clifford-Laguerre continuous wavelet transform
    Brackx, F
    De Schepper, N
    Sommen, F
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (02) : 201 - 215
  • [5] Fatigue Data Analysis using Continuous Wavelet Transform and Discrete Wavelet Transform
    Abdullah, S.
    Sahadan, S. N.
    Nuawi, M. Z.
    Nopiah, Z. M.
    FRACTURE AND STRENGTH OF SOLIDS VII, PTS 1 AND 2, 2011, 462-463 : 461 - 466
  • [6] The generalized clifford-hermite continuous wavelet transform
    F. Brackx
    F. Sommen
    Advances in Applied Clifford Algebras, 2001, 11 (Suppl 1) : 219 - 231
  • [7] The Clifford-Gegenbauer polynomials and the associated continuous wavelet transform
    Brackx, F
    De Schepper, N
    Sommen, F
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (05) : 387 - 404
  • [8] The generalized Hermitean Clifford-Hermite continuous wavelet transform
    Brackx, F.
    De Schepper, H.
    De Schepper, N.
    Sommen, F.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 721 - +
  • [9] Stereographic wavelet frames on the sphere
    Bogdanova, I
    Vandergheynst, P
    Antoine, JP
    Jacques, L
    Morvidone, M
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (02) : 223 - 252
  • [10] Analysis of paper variability using the continuous wavelet transform
    Keller, DS
    Lewalle, J
    Luner, P
    PAPERI JA PUU-PAPER AND TIMBER, 1999, 81 (06): : 440 - 446