On Using Toeplitz and Circulant Matrices for Johnson-Lindenstrauss Transforms

被引:1
作者
Freksen, Casper Benjamin [1 ]
Larsen, Kasper Green [1 ]
机构
[1] Aarhus Univ, Finlandsgade 21, DK-8200 Aarhus N, Denmark
基金
新加坡国家研究基金会;
关键词
Dimensionality reduction; Johnson-Lindenstrauss; Toeplitz matrices; REDUCTION;
D O I
10.1007/s00453-019-00644-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Johnson-Lindenstrauss lemma is one of the cornerstone results in dimensionality reduction. A common formulation of it, is that there exists a random linear mapping f:Rn -> Rm. Much effort has gone into developing fast embedding algorithms, with the Fast Johnson-Lindenstrauss transform of Ailon and Chazelle being one of the most well-known techniques. The current fastest algorithm that yields the optimal m=O(epsilon-2lg(1/delta)) dimensions has an embedding time of O(nlgn+epsilon-2lg3(1/delta)) Toeplitz matrix for the embedding. Using Fast Fourier Transform, the embedding of a vector can then be computed in O(nlgm) dimensions suffice for this technique. If so, this would end a decades long quest to obtain faster and faster Johnson-Lindenstrauss transforms. The current best analysis of the embedding of Hinrichs and Vybiral shows that m=O(epsilon-2lg2(1/delta)) dimensions suffice. The main result of this paper, is a proof that this analysis unfortunately cannot be tightened any further, i.e., there exist vectors requiring m=omega(epsilon-2lg2(1/delta)) for the Toeplitz approach to work.
引用
收藏
页码:338 / 354
页数:17
相关论文
共 25 条
  • [1] Database-friendly random projections: Johnson-Lindenstrauss with binary coins
    Achlioptas, D
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 66 (04) : 671 - 687
  • [2] An Almost Optimal Unrestricted Fast Johnson-Lindenstrauss Transform
    Ailon, Nir
    Liberty, Edo
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2013, 9 (03)
  • [3] Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes
    Ailon, Nir
    Liberty, Edo
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 615 - 630
  • [4] THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM AND APPROXIMATE NEAREST NEIGHBORS
    Ailon, Nir
    Chazelle, Bernard
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 39 (01) : 302 - 322
  • [5] [Anonymous], 2009, P 26 ANN INT C MACHI, DOI DOI 10.1145/1553374.1553516
  • [6] The Johnson-Lindenstrauss Transform Itself Preserves Differential Privacy
    Blocki, Jeremiah
    Blum, Avrim
    Datta, Anupam
    Sheffet, Or
    [J]. 2012 IEEE 53RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2012, : 410 - 419
  • [7] Randomized Dimensionality Reduction for k-Means Clustering
    Boutsidis, Christos
    Zouzias, Anastasios
    Mahoney, Michael W.
    Drineas, Petros
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 1045 - 1062
  • [8] Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information
    Candès, EJ
    Romberg, J
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) : 489 - 509
  • [9] Dimensionality Reduction for k-Means Clustering and Low Rank Approximation
    Cohen, Michael B.
    Elder, Sam
    Musco, Cameron
    Musco, Christopher
    Persu, Madalina
    [J]. STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 163 - 172
  • [10] Dasgupta A, 2010, ACM S THEORY COMPUT, P341