Magnetic Flux Rope Shredding By a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions

被引:14
作者
Chintzoglou, Georgios [1 ,2 ]
Vourlidas, Angelos [3 ,6 ]
Savcheva, Antonia [4 ]
Tassev, Svetlin [4 ]
Beltran, Samuel Tun [5 ]
Stenborg, Guillermo [5 ]
机构
[1] Lockheed Martin Solar & Astrophys Lab, 3176 Porter Dr, Palo Alto, CA 94304 USA
[2] Univ Corp Atmospher Res, Boulder, CO 80307 USA
[3] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[4] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[5] Naval Res Lab, Space Sci Div, Washington, DC 20375 USA
[6] Natl Observ Athens, IAASARS, GR-15236 Penteli, Greece
关键词
Sun: corona; Sun: evolution; Sun:; filaments; prominences; Sun: flares; Sun: general; Sun: magnetic fields; DYNAMICS-OBSERVATORY SDO; CORONAL MASS EJECTIONS; ACTIVE-REGION; FLARE; FIELDS; MODEL; SUN; RECONNECTION; EVOLUTION; FILAMENT;
D O I
10.3847/1538-4357/aa77b2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the Very high Angular resolution Ultraviolet Telescope (VAULT2.0) sounding rocket launch. The refurbished VAULT2.0 is a Ly alpha (lambda 1216 angstrom) spectroheliograph launched on 2014 September 30. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low-level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No coronal mass ejection was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion that enabled us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope (MFR)-like structure was destroyed during its interaction with the ambient magnetic field, creating downflows of cool plasma and diffuse hot coronal structures reminiscent of "cusps." We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.
引用
收藏
页数:15
相关论文
共 43 条
[1]   A model for solar coronal mass ejections [J].
Antiochos, SK ;
DeVore, CR ;
Klimchuk, JA .
ASTROPHYSICAL JOURNAL, 1999, 510 (01) :485-493
[2]   The topology and evolution of the Bastille Day flare [J].
Aulanier, G ;
DeLuca, EE ;
Antiochos, SK ;
McMullen, RA ;
Golub, L .
ASTROPHYSICAL JOURNAL, 2000, 540 (02) :1126-1142
[3]   Modeling nonpotential magnetic fields in solar active regions [J].
Bobra, M. G. ;
van Ballegooijen, A. A. ;
DeLuca, E. E. .
ASTROPHYSICAL JOURNAL, 2008, 672 (02) :1209-1220
[4]   The large angle spectroscopic coronagraph (LASCO) [J].
Brueckner, GE ;
Howard, RA ;
Koomen, MJ ;
Korendyke, CM ;
Michels, DJ ;
Moses, JD ;
Socker, DG ;
Dere, KP ;
Lamy, PL ;
Llebaria, A ;
Bout, MV ;
Schwenn, R ;
Simnett, GM ;
Bedford, DK ;
Eyles, CJ .
SOLAR PHYSICS, 1995, 162 (1-2) :357-402
[5]   FORMATION OF MAGNETIC FLUX ROPES DURING CONFINED FLARING WELL BEFORE THE ONSET OF A PAIR OF MAJOR CORONAL MASS EJECTIONS [J].
Chintzoglou, Georgios ;
Patsourakos, Spiros ;
Vourlidas, Angelos .
ASTROPHYSICAL JOURNAL, 2015, 809 (01)
[6]   The Interface Region Imaging Spectrograph (IRIS) [J].
De Pontieu, B. ;
Title, A. M. ;
Lemen, J. R. ;
Kushner, G. D. ;
Akin, D. J. ;
Allard, B. ;
Berger, T. ;
Boerner, P. ;
Cheung, M. ;
Chou, C. ;
Drake, J. F. ;
Duncan, D. W. ;
Freeland, S. ;
Heyman, G. F. ;
Hoffman, C. ;
Hurlburt, N. E. ;
Lindgren, R. W. ;
Mathur, D. ;
Rehse, R. ;
Sabolish, D. ;
Seguin, R. ;
Schrijver, C. J. ;
Tarbell, T. D. ;
Wuelser, J. -P. ;
Wolfson, C. J. ;
Yanari, C. ;
Mudge, J. ;
Nguyen-Phuc, N. ;
Timmons, R. ;
van Bezooijen, R. ;
Weingrod, I. ;
Brookner, R. ;
Butcher, G. ;
Dougherty, B. ;
Eder, J. ;
Knagenhjelm, V. ;
Larsen, S. ;
Mansir, D. ;
Phan, L. ;
Boyle, P. ;
Cheimets, P. N. ;
DeLuca, E. E. ;
Golub, L. ;
Gates, R. ;
Hertz, E. ;
McKillop, S. ;
Park, S. ;
Perry, T. ;
Podgorski, W. A. ;
Reeves, K. .
SOLAR PHYSICS, 2014, 289 (07) :2733-2779
[7]   The SOHO mission: An overview [J].
Domingo, V ;
Fleck, B ;
Poland, AI .
SOLAR PHYSICS, 1995, 162 (1-2) :1-37
[8]   THE MOTION OF MAGNETIC FIELDS [J].
DUNGEY, JW .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1953, 113 (06) :679-682
[9]   MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283 [J].
Jiang, Chaowei ;
Feng, Xueshang ;
Wu, S. T. ;
Hu, Qiang .
ASTROPHYSICAL JOURNAL LETTERS, 2013, 771 (02)
[10]   Torus instability [J].
Kliem, B. ;
Torok, T. .
PHYSICAL REVIEW LETTERS, 2006, 96 (25)