Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing

被引:13
作者
Creutzig, Felix [1 ]
Benda, Jan [2 ,3 ]
Wohlgemuth, Sandra [4 ]
Stumpner, Andreas [5 ]
Ronacher, Bernhard [6 ,7 ]
Herz, Andreas V. M. [2 ,3 ]
机构
[1] Tech Univ Berlin, Dept Econ Climate Change, D-10623 Berlin, Germany
[2] Univ Munich, Dept Biol, D-82152 Martinsried, Germany
[3] Univ Munich, Bernstein Ctr Computat Neurosci Munchen, D-82152 Martinsried, Germany
[4] Free Univ Berlin, Inst Biol, Abt Verhaltensbiol, D-14195 Berlin, Germany
[5] Univ Gottingen, Abt Zellulare Neurobiol, Johann Friedrich Blumenbach Inst Zool & Anthropol, D-37077 Gottingen, Germany
[6] Humboldt Univ, Dept Biol, D-10115 Berlin, Germany
[7] Humboldt Univ, Bernstein Ctr Computat Neurosci Berlin, D-10115 Berlin, Germany
关键词
GRASSHOPPER CHORTHIPPUS-BIGUTTULUS; SPIKE-FREQUENCY ADAPTATION; PRIMARY AUDITORY-CORTEX; ACOUSTIC COMMUNICATION; METATHORACIC GANGLION; NEURONS; SONG; INTERNEURONS; INFORMATION; INTEGRATION;
D O I
10.1162/neco.2010.05-09-1016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feed-forward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.
引用
收藏
页码:1493 / 1510
页数:18
相关论文
共 43 条
[1]   Long-term temporal integration in the anuran auditory system [J].
Alder, TB ;
Rose, GJ .
NATURE NEUROSCIENCE, 1998, 1 (06) :519-523
[2]   A universal model for spike-frequency adaptation [J].
Benda, J ;
Herz, AVM .
NEURAL COMPUTATION, 2003, 15 (11) :2523-2564
[3]  
BENDA J, 2002, THESIS HUMBOLDT U BE
[4]   Timing and specificity of feed-forward inhibition within the LGN [J].
Blitz, DM ;
Regehr, WG .
NEURON, 2005, 45 (06) :917-928
[5]   Timing in the auditory system of the bat [J].
Covey, E ;
Casseday, JH .
ANNUAL REVIEW OF PHYSIOLOGY, 1999, 61 :457-476
[6]  
Creutzig F, 2008, THESIS HUMBOLDT U BE
[7]   Timescale-Invariant Representation of Acoustic Communication Signals by a Bursting Neuron [J].
Creutzig, Felix ;
Wohlgemuth, Sandra ;
Stumpner, Andreas ;
Benda, Jan ;
Ronacher, Bernhard ;
Herz, Andreas V. M. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (08) :2575-2580
[8]   Auditory thalamocortical synaptic transmission in vitro [J].
Cruikshank, SJ ;
Rose, HJ ;
Metherate, R .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 87 (01) :361-384
[9]  
de Boer E., 1985, TIME RESOLUTION AUDI, P141, DOI DOI 10.1007/978-3-642-70622-6_9
[10]   Dynamics of precise spike timing in primary auditory cortex [J].
Elhilali, M ;
Fritz, JB ;
Klein, DJ ;
Simon, JZ ;
Shamma, SA .
JOURNAL OF NEUROSCIENCE, 2004, 24 (05) :1159-1172