Interface Energy Measurement of MgO and ZnO: Understanding the Thermodynamic Stability of Nanoparticles

被引:49
作者
Castro, Ricardo H. R. [1 ,2 ]
Torres, Ricardo B. [3 ]
Pereira, Gilberto J. [4 ]
Gouvea, Douglas [5 ]
机构
[1] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
[2] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA
[3] FEI Univ Ctr, Dept Chem Engn, BR-09850901 Sao Bernardo Do Campo, SP, Brazil
[4] FEI Univ Ctr, Dept Mat Engn, BR-09850901 Sao Bernardo Do Campo, SP, Brazil
[5] Univ Sao Paulo, Dept Met & Mat Engn, BR-05508900 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
SURFACE-ENERGY; GRAIN-BOUNDARY; WATER-ADSORPTION; DIHEDRAL ANGLES; PHASE-STABILITY; GROWTH; ZIRCONIA; ALUMINA; NANOTHERMODYNAMICS; NANOMATERIALS;
D O I
10.1021/cm903404u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanomaterials have triggered excitement in both fundamental science and technological applications in several fields However, the same characteristic high interface area that is responsible for their unique properties causes unconventional instability, often leading to local collapsing during application Thermodynamically, this can be attributed to an increased contribution of the interface to the free energy, activating phenomena such as sintering and grain growth The lack of reliable interface energy data has restricted the development of conceptual models to allow the control of nanoparticle stability on a thermodynamic basis. Here we introduce a novel and accessible methodology to measure interface energy of nanoparticles exploiting the heat released during sintering to establish a quantitative relation between the solid solid and solid vapor interface energies. We exploited this method in MgO and ZnO nanoparticles and determined that the ratio between the solid solid and solid vapor interface energy is 11 for MgO and 0.7 for ZnO. We then discuss that this ratio is responsible for a thermodynamic metastable state that may prevent collapsing of nanoparticles and, therefore, may be used as a tool to design long-term stable nanoparticles.
引用
收藏
页码:2502 / 2509
页数:8
相关论文
共 52 条
  • [1] EARLY STAGES OF CRYSTALLITE GROWTH OF ZNO OBTAINED FROM AN OXALATE PRECURSOR
    AUFFREDIC, JP
    BOULTIF, A
    LANGFORD, JI
    LOUER, D
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (02) : 323 - 328
  • [2] Size effects and nanostructured materials for energy applications
    Balaya, Palani
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (06) : 645 - 654
  • [3] Surface properties of alkaline earth metal oxides
    Broqvist, P
    Grönbeck, H
    Panas, I
    [J]. SURFACE SCIENCE, 2004, 554 (2-3) : 262 - 271
  • [4] THE SPHERICAL INTERFACE .1. THERMODYNAMICS
    BUFF, FP
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1951, 19 (12) : 1591 - 1594
  • [5] Cao G., 2004, NANOSTRUCTURES NANOM, P433, DOI DOI 10.1142/P305
  • [6] Surface energy and thermodynamic stability of γ-alumina:: Effect of dopants and water
    Castro, RHR
    Ushakov, SV
    Gengembre, L
    Gouvêa, D
    Navrotsky, A
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (07) : 1867 - 1872
  • [7] Interface excess and polymorphic stability of nanosized zirconia-magnesia
    Castro, Ricardo H. R.
    Marcos, Paulo J. B.
    Lorriaux, Annick
    Steil, Marlu C.
    Gengembre, Leon
    Roussel, Pascal
    Gouvea, Douglas
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (10) : 3505 - 3511
  • [8] ANALYSIS OF CALORIMETRIC MEASUREMENTS OF GRAIN-GROWTH
    CHEN, LC
    SPAEPEN, F
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 69 (02) : 679 - 688
  • [9] Direct calorimetric measurement of grain boundary and surface enthalpies in yttria-stabilized zirconia
    Chen, Shushu
    Avila-Paredes, Hugo J.
    Kim, Sangtae
    Zhao, Jinfeng
    Munir, Zuhair A.
    Navrotsky, Alexandra
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (17) : 3039 - 3042
  • [10] Chiang Y.-M., 1992, Nanostructured Materials, V1, P235, DOI 10.1016/0965-9773(92)90101-3