Solvable model of strings in a time-dependent plane-wave background

被引:101
作者
Papadopoulos, G [2 ]
Russo, JG
Tseytlin, AA
机构
[1] CERN, Div Theory, CH-1211 Geneva, Switzerland
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
[3] Univ Buenos Aires, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[4] Ohio State Univ, Smith Lab, Columbus, OH 43210 USA
[5] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Theoret Phys Grp, London SW7 2BZ, England
[6] Consejo Nacl Invest Cient & Tecn, RA-1428 Buenos Aires, DF, Argentina
[7] PN Lebedev Phys Inst, Moscow 117924, Russia
关键词
D O I
10.1088/0264-9381/20/5/313
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate a string model defined by a special plane-wave metric ds(2) 2du dv - lambda(u)x(2) du(2) + dx(2) with lambda and k/u(2) = const > 0. This metric is a Penrose limit of some cosmological, Dp-brane and fundamental string backgrounds. Remarkably, in Rosen coordinates the metric has a 'null cosmology' interpretation with flat spatial sections and scale factor which is a power of the light-cone time u. We show that: (i) this spacetime is a Lorentzian homogeneous space. In particular, it admits a boost isometry u' = lu, v' = l(-1)v similar to Minkowski space. (ii) It is an exact solution of string theory when supplemented by a u-dependent dilaton such that the corresponding effective string coupling e(phi(u)) goes to zero at u = infinity and at the singularity u = 0, reducing back-reaction effects. (iii) The classical string equations in this background become linear in the light-cone gauge and can be solved explicitly in terms of Bessel's functions, and thus the string model can be directly quantized. This allows one to address the issue of singularity at the string-theory level. We examine the propagation of first-quantized point-particle and string modes in this time-dependent background. Using an analytic continuation prescription we argue that the string propagation through the singularity can be smooth.
引用
收藏
页码:969 / 1016
页数:48
相关论文
共 79 条
[1]   NONPERTURBATIVE COMPUTATION OF THE WEYL ANOMALY FOR A CLASS OF NONTRIVIAL BACKGROUNDS [J].
AMATI, D ;
KLIMCIK, C .
PHYSICS LETTERS B, 1989, 219 (04) :443-447
[2]   STRINGS IN A SHOCK-WAVE BACKGROUND AND GENERATION OF CURVED GEOMETRY FROM FLAT-SPACE STRING THEORY [J].
AMATI, D ;
KLIMCIK, C .
PHYSICS LETTERS B, 1988, 210 (1-2) :92-96
[3]  
BACHAS C, 2002, HEPTH0210269
[4]   The dual of nothing [J].
Balasubramanian, V ;
Ross, SF .
PHYSICAL REVIEW D, 2002, 66 (08)
[5]  
BALASUBRAMANIAN V, 2002, HEPTH0202187
[6]  
BANKS T, 2001, HEPTH0102077
[7]   Strings in flat space and pp waves from N = 4 super Yang Mills [J].
Berenstein, D ;
Maldacena, J ;
Natase, H .
JOURNAL OF HIGH ENERGY PHYSICS, 2002, (04)
[8]  
Berkovits N, 2002, J HIGH ENERGY PHYS
[9]   Gauge theory description of compactified pp-waves [J].
Bertolini, M ;
de Boer, J ;
Harmark, T ;
Imeroni, E ;
Obers, NA .
JOURNAL OF HIGH ENERGY PHYSICS, 2003, (01) :313-376
[10]  
Blau M, 2002, J HIGH ENERGY PHYS