Wishart and pseudo-Wishart distributions and some applications to shape theory

被引:62
作者
DiazGarcia, JA [1 ]
Jaimez, RG [1 ]
Mardia, KV [1 ]
机构
[1] UNIV LEEDS,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
关键词
singular matrix distributions; Wishart distribution; Pseudo-Wishart distribution; Normal matrix variate distribution; Noncentral distributions; singular values; Stiefel manifold; shape; size-and-shape;
D O I
10.1006/jmva.1997.1689
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that X similar to N-N x m(mu, Sigma, Theta). An expression for the density function is given when Sigma greater than or equal to 0 and/or Theta greater than or equal to 0. An extension of Uhlig's result (Uhlig [17]) is expanded for the singular value decomposition of a matrix Z of order N x m when the rank (Z) = q less than or equal to min(N, m). This paper fills an important gap in unifying, for the first time, all Wishart and pseudo-Wishart distributions, whether central or noncentral, whether singular or nonsingular, and applying them in shape analysis. In particular, the shape density and the size-and-shape cone density are obtained for the singular general case. (C) 1997 Academic Press.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 17 条