Approximating k-hop minimum-spanning trees

被引:34
作者
Althaus, E
Funke, S
Har-Peled, S
Könemann, J
Ramos, EA
Skutella, M
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[2] Univ Henri Poincare, LORIA, F-54506 Vandoeuvre Les Nancy, France
[3] Univ Illinois, Chicago, IL 60680 USA
[4] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
approximation algorithms; minimum spanning trees; depth restriction; metric space approximation;
D O I
10.1016/j.orl.2004.05.005
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a complete graph on n nodes with metric edge costs, the minimum-cost k-hop spanning tree (kHMST) problem asks for a spanning tree of minimum total cost such that the longest root-leaf-path in the tree has at most k edges. We present an algorithm that computes such a tree of total expected cost O(log n) times that of a minimum-cost k-hop spanning-tree. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 16 条
[1]   A 3-approximation algorithm for the k-level uncapacitated facility location problem [J].
Aardal, K ;
Chudak, FA ;
Shmoys, DB .
INFORMATION PROCESSING LETTERS, 1999, 72 (5-6) :161-167
[2]  
Alfandari L., 1999, International Transactions in Operational Research, V6, P607, DOI 10.1111/j.1475-3995.1999.tb00176.x
[3]   Generalized submodular cover problems and applications [J].
Bar-Ilan, J ;
Kortsarz, G ;
Peleg, D .
THEORETICAL COMPUTER SCIENCE, 2001, 250 (1-2) :179-200
[4]  
Bartal Y., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P161, DOI 10.1145/276698.276725
[5]   Probabilistic approximation of metric spaces and its algorithmic applications [J].
Bartal, Y .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :184-193
[6]  
Deering S. E., 1994, P SIGCOMM
[7]   MULTICAST ROUTING IN DATAGRAM INTERNETWORKS AND EXTENDED LANS [J].
DEERING, SE ;
CHERITON, DR .
ACM TRANSACTIONS ON COMPUTER SYSTEMS, 1990, 8 (02) :85-110
[8]   Network flow models for designing Diameter-Constrained Minimum-Spanning and Steiner trees [J].
Gouveia, L ;
Magnanti, TL .
NETWORKS, 2003, 41 (03) :159-173
[9]   Greedy strikes back: Improved facility location algorithms [J].
Guha, S ;
Khuller, S .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 31 (01) :228-248
[10]   Minimum spanning tree with hop restrictions [J].
Hassin, R ;
Levin, A .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2003, 48 (01) :220-238