A Saliva-Based RNA Extraction-Free Workflow Integrated With Cas13a for SARS-CoV-2 Detection

被引:57
作者
Azmi, Iqbal [1 ]
Faizan, Md Imam [1 ]
Kumar, Rohit [2 ]
Raj Yadav, Siddharth [2 ]
Chaudhary, Nisha [1 ]
Kumar Singh, Deepak [1 ]
Butola, Ruchika [3 ]
Ganotra, Aryan [4 ]
Datt Joshi, Gopal [5 ]
Deep Jhingan, Gagan [6 ]
Iqbal, Jawed [1 ]
Joshi, Mohan C. [1 ]
Ahmad, Tanveer [1 ]
机构
[1] Jamia Millia Islamia, Multidisciplinary Ctr Adv Res & Studies, New Delhi, India
[2] Safdarjang Hosp, Dept Pulm Med & Sleep Disorders, Vardhman Mahavir Med Coll, New Delhi, India
[3] 360 Diagnost & Hlth Serv, Noida, India
[4] Delhi Technol Univ, Dept Comp Sci & Engn, Delhi, India
[5] Noodle Analyt Pvt Ltd, Bangalore, Karnataka, India
[6] Valerian Chem Pvt Ltd, New Delhi, India
来源
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY | 2021年 / 11卷
基金
英国惠康基金;
关键词
COVID-19; Crispr-Cas13a; saliva; SARS-CoV-2; CRISPR Diagnostics; NUCLEIC-ACID DETECTION; RT-QPCR; COVID-19; PCR;
D O I
10.3389/fcimb.2021.632646
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
A major bottleneck in scaling-up COVID-19 testing is the need for sophisticated instruments and well-trained healthcare professionals, which are already overwhelmed due to the pandemic. Moreover, the high-sensitive SARS-CoV-2 diagnostics are contingent on an RNA extraction step, which, in turn, is restricted by constraints in the supply chain. Here, we present CASSPIT (Cas13 Assisted Saliva-based & Smartphone Integrated Testing), which will allow direct use of saliva samples without the need for an extra RNA extraction step for SARS-CoV-2 detection. CASSPIT utilizes CRISPR-Cas13a based SARS-CoV-2 RNA detection, and lateral-flow assay (LFA) readout of the test results. The sample preparation workflow includes an optimized chemical treatment and heat inactivation method, which, when applied to COVID-19 clinical samples, showed a 97% positive agreement with the RNA extraction method. With CASSPIT, LFA based visual limit of detection (LoD) for a given SARSCoV-2 RNA spiked into the saliva samples was similar to 200 copies; image analysis-based quantification further improved the analytical sensitivity to similar to 100 copies. Upon validation of clinical sensitivity on RNA extraction-free saliva samples (n = 76), a 98% agreement between the lateral-flow readout and RT-qPCR data was found (Ct<35). To enable user-friendly test results with provision for data storage and online consultation, we subsequently integrated lateral-flow strips with a smartphone application. We believe CASSPIT will eliminate our reliance on RT-qPCR by providing comparable sensitivity and will be a step toward establishing nucleic acid-based point-of-care (POC) testing for COVID-19.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Automated molecular testing of saliva for SARS-CoV-2 detection [J].
Matic, Nancy ;
Lawson, Tanya ;
Ritchie, Gordon ;
Stefanovic, Aleksandra ;
Leung, Victor ;
Champagne, Sylvie ;
Romney, Marc G. ;
Lowe, Christopher F. .
DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2021, 100 (01)
[42]   Comparison of Saliva and Midturbinate Swabs for Detection of SARS-CoV-2 [J].
Lai, Jianyu ;
German, Jennifer ;
Hong, Filbert ;
Tai, S-H Sheldon ;
McPhaul, Kathleen M. ;
Milton, Donald K. .
MICROBIOLOGY SPECTRUM, 2022, 10 (02)
[43]   Recent advances in RNA sample preparation techniques for the detection of SARS-CoV-2 in saliva and gargle [J].
Liu, Yanming ;
Kumblathan, Teresa ;
Tao, Jeffrey ;
Xu, Jingyang ;
Feng, Wei ;
Xiao, Huyan ;
Hu, Jianyu ;
Huang, Camille V. ;
Wu, Yiping ;
Zhang, Hongquan ;
Li, Xing-Fang ;
Le, Chris .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 165
[44]   Saliva Testing is a Robust Non-Invasive Method for SARS-CoV-2 RNA Detection [J].
Paliksa, Sigitas ;
Lopeta, Mantvydas ;
Belevicius, Jonas ;
Kurmauskaite, Vaida ;
Asmenaviciute, Ieva ;
Pereckaite, Laura ;
Vitkauskien, Astra ;
Baliutyte, Ieva ;
Valentaite, Monika ;
Mickiene, Aukse ;
Gagilas, Julius .
INFECTION AND DRUG RESISTANCE, 2021, 14 :2943-2951
[45]   Comparison of SARS-CoV-2 Detection from Saliva Sampling and Oropharyngeal Swab [J].
Clemmensen, Mia de Laurent ;
Bendixen, Kamilla Kolding ;
Flugt, Katharina ;
Pilgaard, Pernille ;
Christensen, Ulf Bech .
MICROBIOLOGY SPECTRUM, 2022, 10 (05)
[46]   Implementation of a Rapid RT-LAMP Saliva-Based SARS-CoV-2 Testing Program in the Workplace [J].
Cook, Bradley W. M. ;
Kobasa, Kaitlyn ;
Tamayo, Marielou ;
Theriault, Natasha ;
Gordon Pappas, Diane ;
Theriault, Steven S. .
DIAGNOSTICS, 2022, 12 (02)
[47]   A Saliva-Based Serological and Behavioral Analysis of SARS-CoV-2 Antibody Prevalence in Howard County, Maryland [J].
Brown, Alan C. ;
Koshute, Phillip T. ;
Cowley, Hannah P. ;
Robinette, Michael S. ;
Gravelyn, Sarah R. ;
Patel, Shraddha V. ;
Ju, Eunice Y. ;
Frommer, Carolyn T. ;
Zambidis, Alexander E. ;
Schneider, Eric J. ;
Zhao, Martina Y. ;
Mugo, Benny K. ;
Clarke, William ;
Kruczynski, Kate ;
Pisanic, Nora ;
Heaney, Chris ;
Colella, Teresa A. .
MICROBIOLOGY SPECTRUM, 2023, 11 (04)
[48]   RdRp activity test using CRISPR/Cas13a enzyme (RACE) for screening of SARS-CoV-2 inhibitors [J].
Yi, Soyeon ;
Guk, Kyeonghye ;
Kim, Hyeran ;
Lee, Kyu-Sun ;
Lim, Eun-Kyung ;
Kang, Taejoon ;
Jung, Juyeon .
SENSORS AND ACTUATORS B-CHEMICAL, 2024, 399
[49]   Evaluating and optimizing Acid-pH and Direct Lysis RNA extraction for SARS-CoV-2 RNA detection in whole saliva [J].
Labute, Brayden ;
Fong, Jackie ;
Ziaee, Farinaz ;
Gombar, Robert ;
Stover, Mathew ;
Beaudin, Terry ;
Badalova, Maria ;
Geng, Qiudi ;
Corchis-Scott, Ryland ;
Podadera, Ana ;
Lago, Kyle ;
Xu, Zhenhuan ;
Lim, Fievel ;
Chiu, Felix ;
Fu, Minghua ;
Nie, Xiaofeng ;
Wu, Yuanmin ;
Quan, Corrina ;
Hamm, Caroline ;
Mckay, R. Michael ;
Ng, Kenneth ;
Porter, Lisa A. ;
Tong, Yufeng .
SCIENTIFIC REPORTS, 2024, 14 (01)
[50]   Extraction-Free Methods for the Detection of SARS-CoV-2 by Reverse Transcription-PCR: a Comparison with the Cepheid Xpert Xpress SARS-CoV-2 Assay across Two Medical Centers [J].
Cameron, Andrew ;
Pecora, Nicole D. ;
Pettengill, Matthew A. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2021, 59 (02)