Bennett and Stinespring, Together at Last

被引:5
作者
Heunen, Chris [1 ]
Kaarsgaard, Robin [1 ]
机构
[1] Univ Edinburgh, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
CATEGORIES;
D O I
10.4204/EPTCS.343.5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a universal construction that relates reversible dynamics on open systems to arbitrary dynamics on closed systems: the restriction affine completion of a monoidal restriction category quotiented by well-pointedness. This categorical completion encompasses both quantum channels, via Stinespring dilation, and classical computing, via Bennett's method. Moreover, in these two cases, we show how our construction can be essentially 'undone' by a further universal construction. This shows how both mixed quantum theory and classical computation rest on entirely reversible foundations.
引用
收藏
页码:102 / 118
页数:17
相关论文
共 19 条
[1]  
Axelsen HB, 2011, LECT NOTES COMPUT SC, V6604, P42, DOI 10.1007/978-3-642-19805-2_4
[2]   LOGICAL REVERSIBILITY OF COMPUTATION [J].
BENNETT, CH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (06) :525-532
[3]   Restriction categories I: categories of partial maps [J].
Cockett, JRB ;
Lack, S .
THEORETICAL COMPUTER SCIENCE, 2002, 270 (1-2) :223-259
[4]  
Comfort C, 2021, Arxiv, DOI arXiv:2004.05287
[5]  
Giles Brett Gordon, 2014, THESIS U CALGARY, DOI [10.11575/PRISM/24917, DOI 10.11575/PRISM/24917]
[6]   Reversible Programs Have Reversible Semantics [J].
Gluck, Robert ;
Kaarsgaard, Robin ;
Yokoyama, Tetsuo .
FORMAL METHODS. FM 2019 INTERNATIONAL WORKSHOPS, PT II, 2020, 12233 :413-427
[7]   A CATEGORICAL FOUNDATION FOR STRUCTURED REVERSIBLE FLOWCHART LANGUAGES: SOUNDNESS AND ADEQUACY [J].
Gluck, Robert ;
Kaarsgaard, Robin .
LOGICAL METHODS IN COMPUTER SCIENCE, 2018, 14 (03)
[8]   Monoidal indeterminates and categories of possible worlds [J].
Hermida, C. ;
Tennent, R. D. .
THEORETICAL COMPUTER SCIENCE, 2012, 430 :3-22
[9]  
Heunen C., 2009, THESIS RADBOUD U NIJ, DOI [10.5117/9789085550242, DOI 10.5117/9789085550242]
[10]  
Heunen C., 2019, Categories for Quantum Theory, DOI DOI 10.1093/OSO/9780198739623.001.0001