Lifshitz Transitions via the Type-II Dirac and Type-II Weyl Points

被引:9
|
作者
Zhang, K. [1 ,2 ]
Volovik, G. E. [2 ,3 ]
机构
[1] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Aalto Univ, Low Temp Lab, POB 15100, FI-00076 Aalto, Finland
[3] Russian Acad Sci, Landau Inst Theoret Phys, Moscow 119334, Russia
基金
中国国家自然科学基金; 欧洲研究理事会;
关键词
SUPERFLUID SYSTEMS; FERMION SEMIMETAL; BERRY PHASE; BARYOGENESIS; GRAPHITE; ELECTRON; SPECTRUM; METAL; ZEROS; ARCS;
D O I
10.1134/S0021364017080094
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The type-II Weyl and type-II Dirac points emerge in semimetals and in relativistic systems. In particular, the type-II Weyl fermions may emerge behind the event horizon of black holes. The type-II Weyl and Dirac points also emerge as the intermediate states of the topological Lifshitz transitions. In one case, the type-II Weyl point connects the Fermi pockets, and the Lifshitz transition corresponds to the transfer of the Berry flux between the Fermi pockets. In the other case, the type-II Weyl point connects the outer and inner Fermi surfaces. At the Lifshitz transition, the Weyl point is released from both Fermi surfaces. They loose their Berry flux, which guarantees the global stability, and without the topological support, the inner surface disappears after shrinking to a point at the second Lifshitz transition. These examples reveal the complexity and universality of topological Lifshitz transitions, which originate from the ubiquitous interplay of a variety of topological characters of the momentum-space manifolds.
引用
收藏
页码:519 / 525
页数:7
相关论文
共 50 条
  • [1] Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That
    Volovik, G. E.
    Zhang, K.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2017, 189 (5-6) : 276 - 299
  • [2] Realizing type-II Weyl points in an optical lattice
    Shastri, Kunal
    Yang, Zhaoju
    Zhang, Baile
    PHYSICAL REVIEW B, 2017, 95 (01)
  • [3] Type-II Weyl cone transitions in driven semimetals
    Chan, Ching-Kit
    Oh, Yun-Tak
    Han, Jung Hoon
    Lee, Patrick A.
    PHYSICAL REVIEW B, 2016, 94 (12)
  • [4] Type-II Weyl semimetals
    Soluyanov, Alexey A.
    Gresch, Dominik
    Wang, Zhijun
    Wu, QuanSheng
    Troyer, Matthias
    Dai, Xi
    Bernevig, B. Andrei
    NATURE, 2015, 527 (7579) : 495 - 498
  • [5] Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference
    Lin, Chun-Liang
    Arafune, Ryuichi
    Liu, Ro-Ya
    Yoshimura, Masato
    Feng, Baojie
    Kawahara, Kazuaki
    Ni, Zeyuan
    Minamitani, Emi
    Watanabe, Satoshi
    Shi, Youguo
    Kawai, Maki
    Chiang, Tai-Chang
    Matsuda, Iwao
    Takagi, Noriaki
    ACS NANO, 2017, 11 (11) : 11459 - 11465
  • [6] TaIrTe4: A ternary type-II Weyl semimetal
    Koepernik, K.
    Kasinathan, D.
    Efremov, D. V.
    Khim, Seunghyun
    Borisenko, Sergey
    Buechner, Bernd
    van den Brink, Jeroen
    PHYSICAL REVIEW B, 2016, 93 (20)
  • [7] Black Hole and Hawking Radiation by Type-II Weyl Fermions
    Volovik, G. E.
    JETP LETTERS, 2016, 104 (09) : 645 - 648
  • [8] Type-II Weyl points in a synthetic three-dimensional acoustic lattice
    Li, Zheng-Wei
    Liang, Bin
    Cheng, Jian-Chun
    APPLIED PHYSICS EXPRESS, 2022, 15 (03)
  • [9] MoTe2: A Type-II Weyl Topological Metal
    Wang, Zhijun
    Gresch, Dominik
    Soluyanov, Alexey A.
    Xie, Weiwei
    Kushwaha, S.
    Dai, Xi
    Troyer, Matthias
    Cava, Robert J.
    Bernevig, B. Andrei
    PHYSICAL REVIEW LETTERS, 2016, 117 (05)
  • [10] Anomalous Nernst effect in type-II Weyl semimetals
    Saha, Subhodip
    Tewari, Sumanta
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (01)