A Generalized (G′/G)-Expansion Method for the Nonlinear Schrodinger Equation with Variable Coefficients

被引:31
作者
Zhang, Sheng [1 ]
Ba, Jin-Mei [1 ]
Sun, Ying-Na [1 ]
Dong, Ling [1 ]
机构
[1] Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2009年 / 64卷 / 11期
关键词
Nonlinear Evolution Equations; Generalized (G '/G)-Expansion Method; Hyperbolic Function Solutions; Trigonometric Function Solutions; Rational Solutions; TRAVELING-WAVE SOLUTIONS; EXP-FUNCTION METHOD; KADOMSTEV-PETVIASHVILI EQUATION; PARTIAL-DIFFERENTIAL-EQUATIONS; SOLITON-SOLUTIONS; SYMBOLIC COMPUTATION; EVOLUTION-EQUATIONS; EXPANSION METHOD; BROER-KAUP; MKDV EQUATION;
D O I
10.1515/zna-2009-1104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a generalized (G'/G)-expansion method, combined with suitable transformations, is used to construct exact solutions of the nonlinear Schrodinger equation with variable coefficients. As a result, hyperbolic function solutions, trigonometeric function solutions, and rational solutions with parameters are obtained. When the parameters are taken as special values, some solutions including the known kink-type solitary wave solution and the singular travelling wave solution are derived from these obtained solutions. It is shown that the generalized (G'/G)-expansion method is direct, effective, and can be used for many other nonlinear evolution equations with variable coefficients in mathematical physics.
引用
收藏
页码:691 / 696
页数:6
相关论文
共 45 条
[1]  
Abassy TA, 2004, INT J NONLIN SCI NUM, V5, P327
[2]  
Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
[3]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[4]   Jacobi elliptic function rational expansion method with symbolic computation to construct new doubly-periodic solutions of nonlinear evolution equations [J].
Chen, Y ;
Wang, Q ;
Li, B .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (09) :529-536
[5]   New exact solutions to the mKdV equation with variable coefficients [J].
Dai, CQ ;
Zhu, JM ;
Zhang, JF .
CHAOS SOLITONS & FRACTALS, 2006, 27 (04) :881-886
[6]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[7]   Homotopy perturbation method for bifurcation of nonlinear problems [J].
He, JH .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (02) :207-208
[8]   Variational principles for some nonlinear partial differential equations with variable coefficients [J].
He, JH .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :847-851
[9]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708
[10]   Some asymptotic methods for strongly nonlinear equations [J].
He, Ji-Huan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (10) :1141-1199