Approximation of the solution of certain nonlinear ODEs with linear complexity

被引:4
|
作者
Dratman, Ezequiel [1 ]
机构
[1] Univ Nacl Gen Sarmiento, Inst Ciencias, Buenos Aires, DF, Argentina
关键词
Two-point boundary-value problem; Finite differences; Neumann boundary condition; Stationary solution; Homotopy continuation; Polynomial system solving; Condition number; Complexity; BOUNDARY-VALUE-PROBLEMS; DIFFUSION EQUATIONS; POLYNOMIAL SYSTEMS; BLOW-UP;
D O I
10.1016/j.cam.2009.10.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the positive stationary solutions of a standard finite-difference discretization of the semilinear heat equation with nonlinear Neumann boundary conditions. We prove that there exists a unique solution of such a discretization, which approximates the unique positive stationary solution of the "continuous" equation. Furthermore, we exhibit an algorithm computing an epsilon-approximation of such a solution by means of a homotopy continuation method. The cost of our algorithm is linear in the number of nodes involved in the discretization and the logarithm of the number of digits of approximation required. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2339 / 2350
页数:12
相关论文
共 50 条
  • [1] APPROXIMATION OF CERTAIN EQUATIONS OF LINEAR AND NONLINEAR EVOLUTION
    RAVIART, PA
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1967, 46 (02): : 109 - &
  • [2] Euler scheme for approximation of solution of nonlinear ODEs under inexact information
    Czyzewska, Natalia
    Morkisz, Pawel M.
    Przybylowicz, Pawel
    APPLIED NUMERICAL MATHEMATICS, 2023, 193 : 226 - 241
  • [3] Exact solvability of certain linear ODEs
    Feckan, Michal
    Pacuta, Julius
    Wang, Jinrong
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (02): : 305 - 316
  • [4] KRYLOV APPROXIMATION OF LINEAR ODEs WITH POLYNOMIAL PARAMETERIZATION
    Koskela, Antti
    Jarlebring, Elias
    Hochstenbach, Michiel E.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (02) : 519 - 538
  • [5] Adaptivity and computational complexity in the numerical solution of ODEs
    Ilie, Silvana
    Soderlind, Gustaf
    Corless, Robert M.
    JOURNAL OF COMPLEXITY, 2008, 24 (03) : 341 - 361
  • [6] The parametric solution of underdetermined linear ODEs
    T. Wolf
    Programming and Computer Software, 2011, 37 : 62 - 70
  • [7] The parametric solution of underdetermined linear ODEs
    Wolf, T.
    PROGRAMMING AND COMPUTER SOFTWARE, 2011, 37 (02) : 62 - 70
  • [8] METHOD FOR SOLUTION TO CERTAIN NON-LINEAR DISCRETE APPROXIMATION PROBLEMS
    KRABS, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1970, 50 (6-7): : 359 - &
  • [9] On the solution of the polynomial systems arising in the discretization of certain ODEs
    Ezequiel Dratman
    Guillermo Matera
    Computing, 2009, 85 : 301 - 337
  • [10] On the solution of the polynomial systems arising in the discretization of certain ODEs
    Dratman, Ezequiel
    Matera, Guillermo
    COMPUTING, 2009, 85 (04) : 301 - 337