Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator

被引:521
作者
Hempel, Cornelius [1 ,3 ]
Maier, Christine [1 ,2 ]
Romero, Jonathan [4 ]
McClean, Jarrod [5 ]
Monz, Thomas [2 ]
Shen, Heng [1 ,2 ]
Jurcevic, Petar [1 ,2 ]
Lanyon, Ben P. [1 ,2 ]
Love, Peter [6 ]
Babbush, Ryan [5 ]
Aspuru-Guzik, Alan [4 ]
Blatt, Rainer [1 ,2 ]
Roos, Christian F. [1 ,2 ]
机构
[1] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Tech Str 21A, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[3] Univ Sydney, ARC Ctr Excellence Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
[4] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[5] Google Inc, 340 Main St, Venice, CA 90291 USA
[6] Tufts Univ, Dept Phys & Astron, 574 Boston Ave, Medford, MA 02155 USA
基金
奥地利科学基金会;
关键词
PHASE-TRANSITION; ENTANGLEMENT; COMPUTATION; ATOMS; PROPAGATION; ALGORITHM; DYNAMICS; HUNDREDS; SYSTEMS;
D O I
10.1103/PhysRevX.8.031022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum-classical hybrid algorithms are emerging as promising candidates for near-term practical applications of quantum information processors in a wide variety of fields ranging from chemistry to physics and materials science. We report on the experimental implementation of such an algorithm to solve a quantum chemistry problem, using a digital quantum simulator based on trapped ions. Specifically, we implement the variational quantum eigensolver algorithm to calculate the molecular ground-state energies of two simple molecules and experimentally demonstrate and compare different encoding methods using up to four qubits. Furthermore, we discuss the impact of measurement noise as well as mitigation strategies and indicate the potential for adaptive implementations focused on reaching chemical accuracy, which may serve as a cross-platform benchmark for multiqubit quantum simulators.
引用
收藏
页数:22
相关论文
共 125 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]  
Babbush R., ARXIV180503662
[5]   Low-Depth Quantum Simulation of Materials [J].
Babbush, Ryan ;
Wiebe, Nathan ;
McClean, Jarrod ;
McClain, James ;
Neven, Hartmut ;
Chan, Garnet Kin-Lic .
PHYSICAL REVIEW X, 2018, 8 (01)
[6]   Exponentially more precise quantum simulation of fermions in the configuration interaction representation [J].
Babbush, Ryan ;
Berry, Dominic W. ;
Sanders, Yuval R. ;
Kivlichan, Ian D. ;
Scherer, Artur ;
Wei, Annie Y. ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (01)
[7]   Exponentially more precise quantum simulation of fermions in second quantization [J].
Babbush, Ryan ;
Berry, Dominic W. ;
Kivlichan, Ian D. ;
Wei, Annie Y. ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18
[8]   Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation [J].
Babbush, Ryan ;
McClean, Jarrod ;
Wecker, Dave ;
Aspuru-Guzik, Alan ;
Wiebe, Nathan .
PHYSICAL REVIEW A, 2015, 91 (02)
[9]   Adiabatic Quantum Simulation of Quantum Chemistry [J].
Babbush, Ryan ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
SCIENTIFIC REPORTS, 2014, 4
[10]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6