On retarded fuzzy functional differential equations and nonabsolute fuzzy integrals

被引:13
作者
Shao, Yabin [1 ]
Mou, Qiong [1 ]
Gong, Zengtai [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
[2] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy number; Fuzzy Henstock integral; Generalized convergence theorem; Retarded fuzzy functional differential equations; Existence theorems for generalized solution; CONTROLLED CONVERGENCE THEOREMS; NUMBER-VALUED FUNCTIONS; BOUNDARY-VALUE-PROBLEMS; HENSTOCK INTEGRALS;
D O I
10.1016/j.fss.2019.02.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a generalized convergence theorem for fuzzy Henstock integrals based on the sequence of fuzzy-number-valued functions which are weak generalized uniformly absolute continuous (U AC G**). To widen the applications of this convergence theorem, we provide some existence theorems for the generalized solution for retarded fuzzy functional differential equations and the dependence of the solutions on a parameter under the assumption of the strong generalized derivative of the solution. Our results generalize existence results in a Kaleva integral setting to a fuzzy Henstock integral setting. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 140
页数:20
相关论文
共 57 条
[1]   Global solutions of fuzzy integro-differential equations under generalized differentiability by the method of upper and lower solutions [J].
Alikhani, Robab ;
Bahrami, Fariba .
INFORMATION SCIENCES, 2015, 295 :600-608
[2]   Toward the existence and uniqueness of solutions of second-order fuzzy differential equations [J].
Allahviranloo, T. ;
Kiani, N. A. ;
Barkhordari, M. .
INFORMATION SCIENCES, 2009, 179 (08) :1207-1215
[3]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[4]   Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :581-599
[5]   First order linear fuzzy differential equations under generalized differentiability [J].
Bede, Barnabas ;
Rudas, Imre J. ;
Bencsik, Attila L. .
INFORMATION SCIENCES, 2007, 177 (07) :1648-1662
[6]   A decomposition theorem for the fuzzy Henstock integral [J].
Bongiorno, B. ;
Di Piazza, L. ;
Musial, K. .
FUZZY SETS AND SYSTEMS, 2012, 200 :36-47
[7]   On new solutions of fuzzy differential equations [J].
Chalco-Cano, Y. ;
Roman-Flores, H. .
CHAOS SOLITONS & FRACTALS, 2008, 38 (01) :112-119
[8]   On fuzzy boundary value problems [J].
Chen, Minghao ;
Wu, Congxin ;
Xue, Xiaoping ;
Liu, Guoqing .
INFORMATION SCIENCES, 2008, 178 (07) :1877-1892
[9]   Periodic behavior of semi-linear uncertain dynamical systems [J].
Chen, Minghao ;
Han, Chengshun .
FUZZY SETS AND SYSTEMS, 2013, 230 :82-91
[10]   Some topological properties of solutions to fuzzy differential systems [J].
Chen, Minghao ;
Han, Chengshun .
INFORMATION SCIENCES, 2012, 197 :207-214