Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter

被引:292
作者
Khorasaninejad, Mohammadreza [1 ]
Crozier, Kenneth B. [1 ,2 ,3 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
[3] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
基金
美国国家科学基金会;
关键词
PHOTONIC CRYSTALS; METAMATERIALS; POLARIZER;
D O I
10.1038/ncomms6386
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The polarization of light plays a central role in its interaction with matter, in situations ranging from familiar (for example, reflection and transmission at an interface) to sophisticated (for example, nonlinear optics). Polarization control is therefore pivotal for many optical systems, and achieved using bulk devices such as wave-plates and beam-splitters. The move towards optical system miniaturization therefore motivates the development of micro- and nanostructures for polarization control. For such control to be complete, one must distinguish not only between linear polarizations, but also between left-and right-circular polarizations. Some previous works used surface plasmons to this end, but these are inherently lossy. Other works used complex-layered structures. Here we demonstrate a planar dielectric chirality-distinguishing beam-splitter. The beam-splitter consists of amorphous silicon nanofins on a glass substrate and deflects left-and right-circularly polarized beams into different directions. Contrary to intuitive expectations, we utilize an achiral architecture to realize a chiral beam-splitting functionality.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography [J].
Ahn, SW ;
Lee, KD ;
Kim, JS ;
Kim, SH ;
Park, JD ;
Lee, SH ;
Yoon, PW .
NANOTECHNOLOGY, 2005, 16 (09) :1874-1877
[2]  
[Anonymous], 2008, PRINCIPLES SURFACE E
[3]  
[Anonymous], 2006, P IEEE COMP SOC C CO
[4]  
Azzam . M. A., 1999, ELLIPSOMETRY POLARIZ
[5]   Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer [J].
Chen, Weibin ;
Abeysinghe, Don C. ;
Nelson, Robert L. ;
Zhan, Qiwen .
NANO LETTERS, 2010, 10 (06) :2075-2079
[6]   Circular polarization vision in a stomatopod crustacean [J].
Chiou, Tsyr-Huei ;
Kleinlogel, Sonja ;
Cronin, Tom ;
Caldwell, Roy ;
Loeffler, Birte ;
Siddiqi, Afsheen ;
Goldizen, Alan ;
Marshall, Justin .
CURRENT BIOLOGY, 2008, 18 (06) :429-434
[7]   Giant Chiral Optical Response from a Twisted-Arc Metamaterial [J].
Cui, Yonghao ;
Kang, Lei ;
Lan, Shoufeng ;
Rodrigues, Sean ;
Cai, Wenshan .
NANO LETTERS, 2014, 14 (02) :1021-1025
[8]   Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction [J].
Dai, Daoxin ;
Bauters, Jared ;
Bowers, John E. .
LIGHT-SCIENCE & APPLICATIONS, 2012, 1 :e1-e1
[9]   Circular dichroism of planar chiral magnetic metamaterials [J].
Decker, M. ;
Klein, M. W. ;
Wegener, M. ;
Linden, S. .
OPTICS LETTERS, 2007, 32 (07) :856-858
[10]   Strong optical activity from twisted-cross photonic metamaterials [J].
Decker, M. ;
Ruther, M. ;
Kriegler, C. E. ;
Zhou, J. ;
Soukoulis, C. M. ;
Linden, S. ;
Wegener, M. .
OPTICS LETTERS, 2009, 34 (16) :2501-2503