THE INVERSE OF THE DIVERGENCE OPERATOR ON PERFORATED DOMAINS WITH APPLICATIONS TO HOMOGENIZATION PROBLEMS FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM

被引:27
作者
Diening, Lars [1 ]
Feireisl, Eduard [2 ]
Lu, Yong [3 ]
机构
[1] Univ Osnabruck, Inst Math, Albrechtstr 28a, D-49076 Osnabruck, Germany
[2] Acad Sci Czech Republ, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
[3] Charles Univ Prague, Fac Math & Phys, Math Inst, Sokolovska 83, Prague 18675, Czech Republic
关键词
Perforated domains; Bogovskii type operators; homogenization; compressible Navier-Stokes system; WEAK SOLUTIONS; EQUATIONS;
D O I
10.1051/cocv/2016016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the inverse of the divergence operator on a domain Omega subset of R-3 perforated by a system of tiny holes. We show that such inverse can be constructed on the Lebesgue space L-p (Omega) for any 1 < p < 3, with a norm independent of perforation, provided the holes are suitably small and their mutual distance suitably large. Applications are given to problems arising in homogenization of steady compressible fluid flows.
引用
收藏
页码:851 / 868
页数:18
相关论文
共 23 条
[11]   Homogenization of Stationary Navier-Stokes Equations in Domains with Tiny Holes [J].
Feireisl, Eduard ;
Lu, Yong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (02) :381-392
[12]  
Feireisl E, 2009, ADV MATH FLUID MECH, P1
[13]   Homogenization and singular limits for the complete Navier-Stokes-Fourier system [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Takahashi, Takeo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (01) :33-57
[14]   The Dirichlet problem for steady viscous compressible flow in three dimensions [J].
Frehse, J. ;
Steinhauer, M. ;
Weigant, W. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (02) :85-97
[15]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[16]  
Lions P.-L., 1998, MATH TOPICS FLUID DY, V2
[17]   Homogenization of the compressible Navier-Stokes equations in a porous medium [J].
Masmoudi, N .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :885-906
[18]   HOMOGENIZATION OF NONSTATIONARY NAVIER-STOKES EQUATIONS IN A DOMAIN WITH A GRAINED BOUNDARY [J].
MIKELIC, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 158 :167-179
[19]  
Novotny A., 2004, Introduction to the mathematical theory of compressible flow, of oxford lecture
[20]  
Plotnikov P., 2012, INSTYTUT MATEMATYCZN, V73