Action principles for extended magnetohydrodynamic models

被引:34
作者
Charidakos, I. Keramidas [1 ,2 ]
Lingam, M. [1 ,2 ]
Morrison, P. J. [1 ,2 ]
White, R. L. [1 ,2 ]
Wurm, A. [3 ]
机构
[1] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Western New England Univ, Dept Phys & Biol Sci, Springfield, MA 01119 USA
关键词
VARIATIONAL PRINCIPLE; RELABELING SYMMETRIES; HAMILTONS PRINCIPLE; STABILITY; HYDRODYNAMICS; FORMULATIONS; PLASMAS; WAVES; FLOWS;
D O I
10.1063/1.4896336
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid models from the two-fluid equations of motion. To ensure that the reduced models are Hamiltonian, we start with the general two-fluid action functional, and make all the approximations, changes of variables, and expansions directly within the action context. The resulting equations are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. Using this method, we recover Lust's general two-fluid model, extended magnetohydrodynamic (MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability-Theory [J].
Andreussi, T. ;
Morrison, P. J. ;
Pegoraro, F. .
PHYSICS OF PLASMAS, 2013, 20 (09)
[2]   MHD equilibrium variational principles with symmetry [J].
Andreussi, T. ;
Morrison, P. J. ;
Pegoraro, F. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (05)
[3]  
Andreussi T., 2012, B AM PHYS SOC, V57
[4]  
Braginskii S. I., 1965, REV PLASMA PHYS, V1
[5]   Noether derivation of exact conservation laws for dissipationless reduced-fluid models [J].
Brizard, A. J. .
PHYSICS OF PLASMAS, 2010, 17 (11)
[6]  
BUTCHER PN, 1953, PHILOS MAG, V44, P971
[7]   LAGRANGIAN METHODS IN PLASMA DYNAMICS .2. CONSTRUCTION OF LAGRANGIANS FOR PLASMAS [J].
DOUGHERTY, JP .
JOURNAL OF PLASMA PHYSICS, 1974, 11 (APR) :331-346
[8]   LAGRANGIAN STABILITY OF FLUIDS AND MULTIFLUID PLASMAS [J].
ELSASSER, K .
PHYSICS OF PLASMAS, 1994, 1 (10) :3161-3173
[9]  
Goedbloed J.P., 2004, PRINCIPLES MAGNETOHY
[10]   Phase mixing and island saturation in Hamiltonian reconnection [J].
Grasso, D ;
Califano, F ;
Pegoraro, F ;
Porcelli, F .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5051-5054