A lumped fluidic model of an anode chamber for fault tolerant strategy design

被引:13
作者
Fukuhara, Soichi [1 ]
Marx, Neigel [1 ,2 ]
Ettihir, Khalid [2 ]
Boulon, Loic [2 ]
Ait-Amirat, Youcef [1 ]
Becherif, Mohamed [1 ]
机构
[1] FCLab FR CNRS 3539, Fernto ST UMR CNRS 6174, Rue Thierry Mieg, F-90010 Belfort, France
[2] Univ Quebec Trois Rivieres, Inst Rech Hydrogene, POB 500, Trois Rivieres, PQ G9A 5H, Canada
关键词
PEM; Exhaust gas management; Carbon corrosion; Fuel cell; Fault tolerant; Model; MEMBRANE FUEL-CELL; PERFORMANCE; DURABILITY; MANAGEMENT;
D O I
10.1016/j.ijhydene.2016.01.110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water management in Proton Exchange Membrane (PEM) fuel cell systems is a critical point. This article will widely explain the importance of anode exhaust gas management for fuel cell and the issues of liquid water accumulation in the anodic compartment of a dead-ended anode fuel cell system. A OD model of the water behavior in the anode channels is introduced and an identification procedure of the water diffusion coefficient and a tunable parameter, using the least-square criteria, has been developed. The presented results show good correlation, allowing to extend the model to hydrogen and to validate it with experiments. This model will be useful to elaborate a fault tolerant strategy to mitigate the impact of liquid water accumulation into the anode chamber. Copyright (C) 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5037 / 5047
页数:11
相关论文
共 31 条
[1]  
Adegnon Kokou Mattewu, 2009, 2009 Canadian Conference on Electrical and Computer Engineering (CCECE 2009), P716, DOI 10.1109/CCECE.2009.5090223
[2]   A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells [J].
Anderson, Ryan ;
Zhang, Lifeng ;
Ding, Yulong ;
Blanco, Mauricio ;
Bi, Xiaotao ;
Wilkinson, David P. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4531-4553
[3]  
[Anonymous], 2012, PEM FUEL CELLS THEOR
[4]   Electrical equivalent model of a proton exchange membrane fuel cell with experimental validation [J].
Becherif, M. ;
Hissel, D. ;
Gaagat, S. ;
Wack, M. .
RENEWABLE ENERGY, 2011, 36 (10) :2582-2588
[5]   MPPT of a PEMFC based on air supply control of the motocompressor group [J].
Becherif, M. ;
Hissel, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (22) :12521-12530
[6]   Experimental analysis of a PEM fuel cell performance at variable load with anodic exhaust management optimization [J].
Belvedere, B. ;
Bianchi, M. ;
Borghetti, A. ;
De Pascale, A. ;
Paolone, M. ;
Vecci, R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (01) :385-393
[7]  
Blanke M, 2001, P AMER CONTR CONF, P2606, DOI 10.1109/ACC.2001.946264
[8]  
Borgnakke C., 2019, Fundamentals of Thermodynamics, Vtenth
[9]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[10]   A macroscopic PEM fuel cell model including water phenomena for vehicle simulation [J].
Boulon, L. ;
Agbossou, K. ;
Hissel, D. ;
Sicard, R. ;
Bouscayrol, A. ;
Pera, M. -C. .
RENEWABLE ENERGY, 2012, 46 :81-91